MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

SOLUTIONS: 3rd SUBJECT. FUNCTIONS

SOLUTION EXERCISE 1: We have that, $\operatorname{im} f=[0,+\infty), f([0,2])=[0,4]$, $f([2,+\infty))=[4,+\infty), f((-\infty,-1) \cup[2,+\infty))=(1,+\infty), f^{-1}(1)=\{-1,1\}$, $f^{-1}(-1)=\emptyset, f^{-1}([-1,0])=\{0\}$ and $f^{-1}((1,+\infty))=(-\infty,-1) \cup(1,+\infty)$.

SOLUTION EXERCISE 2:

(i) If we consider the function $f: \mathbb{R} \longrightarrow[0,+\infty)$ given by $f(x)=x^{2}$, for any $x \in \mathbb{R}$, then it is clear that f is not a bijective map (it is surjective but it is not injective), and consequently the inverse map f^{-1} does not exist.
(ii) Consider now the function $g:[0,+\infty) \longrightarrow[0,+\infty)$ given by $g(x)=x^{2}$, for any $x \in \mathbb{R}$. We have that g is a restriction of the function f to the set $[0,+\infty)$, and clearly g is a bijective function. It means that the inverse function $g^{-1}:[0,+\infty) \longrightarrow[0,+\infty)$ exists. Let us calculate now which is the expression determined by g^{-1}. Remind that $g^{-1}(y)=x$ if and only if $g(x)=$ y. Then, in order to calculate the image of any $y \in[0,+\infty)$ through the function g^{-1}, we should solve the equation $g(x)=y$, for the indeterminate x. We did the same when we analyzed the function g being surjective. We get $x=\sqrt{y}$. Thus, $g^{-1}(y)=\sqrt{y}$, and renaming the indeterminate, we have that $g^{-1}(x)=\sqrt{x}$, for any $x \in[0,+\infty)$.
(iii) Let $h:(-\infty, 0] \longrightarrow[0,+\infty)$ be the function given by the expression $h(x)=$ x^{2}, for any $x \in \mathbb{R}$. In other words, let us consider the restriction of f to $(-\infty, 0]$. Repeating the same argument followed in the previous item (ii), we conclude that h is a bijective function, and it can be proved easily that $h^{-1}(x)=-\sqrt{x}$, for any $x \in[0,-\infty)$.

SOLUTION EXERCISE 3: (i) Clearly f is not injective. For instance, $f(-1)=2=f(1)$, and $-1 \neq 1$. Observing what the graph of the function f is, we conclude that f is surjective.

(ii) $f([0,2])=[1,3]$ and $f^{-1}([0,2])=[-3,1]$
(iii)

$$
(f \circ g)(x)=\left\{\begin{array}{rrr}
1, & \text { when } & x=0 \\
|x|+2, & \text { when } & x \neq 0
\end{array}\right.
$$

Finally, $(f \circ g)(\mathbb{R})=\{1\} \cup[2, \infty)$.
SOLUTION EXERCISE 4: The obtained composition functions are the following:

$$
\begin{gathered}
(f \circ f)(x)=f(f(x))=f\left(x^{2}\right)=\left(x^{2}\right)^{2}=x^{4}, \\
(f \circ g)(x)=f(g(x))=f(x+2)=(x+2)^{2}=x^{2}+4 x+4, \\
(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=x^{2}+2, \\
(g \circ g)(x)=g(g(x))=g(x+2)=(x+2)+2=x+4 .
\end{gathered}
$$

Notice that $f \circ g \neq g \circ f$. Thus, the order of the composition factors is relevant.

