MATHS BASIC COURSE FOR UNDERGRADUATES


Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

## SOLUTIONS: 2nd. SUBJECT. COMPLEX NUMBERS

SOLUTION EXERCISE 1: $5 i=5_{\pi / 2} ; 1+i=(\sqrt{2})_{\pi / 4}$ and $-1-i=(\sqrt{2})_{5 \pi / 4}$.
SOLUTION EXERCISE 2: $\left(3_{\pi / 3}\right)^{3}=27_{\pi}$;

$$
\frac{2_{\pi / 3}}{\sqrt{5} \pi / 4}=\left(\frac{2}{\sqrt{5}}\right)_{\pi / 3-\pi / 4}=\left(\frac{2}{\sqrt{5}}\right)_{\pi / 12} .
$$

SOLUTION EXERCISE 3: Observe that $z=-\sqrt{3}+i$ can also be written as $z=2\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$. Hence,

$$
z^{7}=2^{7}\left(\cos \frac{35 \pi}{6}+i \sin \frac{35 \pi}{6}\right)=2^{7}\left(\cos \frac{-\pi}{6}+i \sin \frac{-\pi}{6}\right)=2^{7}\left(\frac{\sqrt{3}}{2}+i \frac{-1}{2}\right)=2^{6}(\sqrt{3}-i)
$$

SOLUTION EXERCISE 4: First of all, observe that the equation $\cos 3 \theta+$ $i \sin 3 \theta=(\cos \theta+i \sin \theta)^{3}$ is fulfilled. Raising to the third power and matching the real and the imaginary parts of both sides, we conclude that $\cos 3 \theta=4 \cos ^{3} \theta-$ $3 \cos \theta$.

SOLUTION EXERCISE 5: The 4 -th roots of the unity are $1, e^{i \frac{\pi}{2}}, e^{i \pi}$ and $e^{i \frac{3 \pi}{2}}$, which can also be written as $1, i,-1,-i$.
Moreover, the 6 -th roots of the unity are $1, e^{i \frac{\pi}{3}}, e^{i \frac{2 \pi}{3}},-1, e^{i \frac{4 \pi}{3}}$ eta $e^{i \frac{5 \pi}{3}}$, and they are the vertices of a regular hexagon inscribed in a circle.

SOLUTION EXERCISE 6: We have to calculate the fifth roots of the complex number $-\sqrt{3}+i$. To accomplish this, first we have to express $z_{0}=-\sqrt{3}+i=$ $2 e^{i \frac{5 \pi}{6}}$. Then, a fifth root of $z_{0}$ can be $\alpha=2^{\frac{1}{5}} e^{i \frac{\pi}{6}}$. If $w$ is a fifth root of the unity, then $(\alpha . w)^{5}=\alpha^{5} w^{5}=\alpha^{5}=z_{0}$. Thus, $\alpha . w$ is also a fifth root of $z_{0}$. Consequently, the fifth roots of $-\sqrt{3}+i$ are

$$
\alpha, \alpha e^{i \frac{2 \pi}{5}}, \alpha e^{i \frac{4 \pi}{5}}, \alpha e^{i \frac{6 \pi}{5}}, \alpha e^{i \frac{8 \pi}{5}}
$$

In fact, there are five roots that are the fifth roots of $z_{0}$. If $\beta$, is another fifth root of $z_{0}$, then $\beta^{5}=\alpha^{5}=z_{0}$, and from here, $\frac{\beta^{5}}{\alpha^{5}}=1$, which indicates that $\frac{\beta}{\alpha}=w$ is a fifth root of the unity. As a consequence, $\beta=\alpha w$, which is already on the previous list.
Therefore, all the fifth roots of $(-\sqrt{3}+i)$ are

$$
2^{\frac{1}{5}} e^{i \frac{\pi}{6}}, 2^{\frac{1}{5}} e^{i \frac{17 \pi}{30}}, 2^{\frac{1}{5}} e^{i \frac{29 \pi}{30}}, 2^{\frac{1}{5}} e^{i \frac{41 \pi}{30}}, 2^{\frac{1}{5}} e^{i \frac{53 \pi}{30}}
$$

