EXERCISE 1

Represent the diedric projections of the points B, C, D, E, F and G.

EXERCISE 2

Find the intersection of the plane α determined by the points $(4,0,3),(1,0,0)$ and $(1,1,0)$, and the plane β determined by $(2,0,2),(6,0,0)$ and $(6,3,0)$.

Find the intersection between the planes α and β.

EXERCISE 3

Calculate the intersection between the planes β and $\alpha . \beta$ contains the points $A=(6,3,1)$, $B=(1,1,2)$ and $C=(3, y, 4)$, and it is perpendicular to the plane XOY. α contains the point $P(1,1,2)$, and it is parallel to the plane $X O Z$.

Find the intersection between the planes $A B C$ and α. Which kind of line is it?

EXERCISE 4

Find the parallel plane to the line $r:\left\{\begin{array}{c}x+3 z=11 \\ y+3 z=6\end{array}\right.$ which contains the line $t: \frac{x-2}{3}=1-y=\frac{z}{3}$.

Draw the plane that being parallel to the line r, contains the line t.

EXERCISE 5

Find the line that passing through the point $P(9,7,4)$, is perpendicular to the plane α. This plane contains the points $(7,0,0)$ and $(4,3,0)$, and it is perpendicular to the plane $z=0$. Calculate the point of intersection between them

Draw the line p that passing through the point P is perpendicular to the plane α.
Calculate the point of intersection I between them.

EXERCISE 6

Find the plane that passing through the point $P(2,-2,4)$ is perpendicular to the line that passing through the point $(8,5,2)$ is perpendicular to the plane XOY. Calculate the point of intersection between them.

Draw the plane α that contains the point P and is perpendicuar to the line r.
Find the intersection between them (I).

EXERCISE 7

Draw the line that passing through the point $P(12,3,6)$ is perpendicular to the line r that passes through $(6,5,4)$ and $(0,8,7)$, and is parallel to the plane α determined by the points $(11,0,0),(6,0,2)$ and $(8,4,0)$.

Draw the line r that passes through the point P and it is parallel to the plane α.

EXERCISE 8

Find the planes that contain the point $P(4,3,1)$, are perpendicular to the plane $\alpha: 5 x+6 y+4 z=50$ and parallel to the line r that passes through the points $(6,5,4)$ and $(0,8,7)$.

Draw the planes that contain the point P, are perpendicular to α and parallel to the line r.

EXERCISE 9

Calculate the distance between the points $A(4,3,3)$ and $B(0,1,6)$.

Calculate the distance between the points A and B.

EXERCISE 10

Calculate the distance between the points $A(4,8,6)$ and $B(4,3,3)$.

Calculate the distance between the points $A(4,8,6)$ and $B(4,3,3)$.

EXERCISE 11

Calculate the distance between the points $A(4,3,3)$ and $B(4,3,6)$.

Calculate the distance between the points A and B.

EXERCISE 12

Calculate the distance between the plane $\alpha: 4 x+y+4 z=36$ and the plane β determined by the points $(2,0,0),(1,0,1)$ and $(1,4,0)$.

Calculate the distance between the planes α and β.

EXERCISE 13

Let α be a plane determined by the points, $(9,0,0),(10,0,1)$ and $(9,4,0)$, and β determined by $(2,0,0),(7,0,5)$ and $(2,4,0)$. Calculate the distance between these planes.

Calculate the distance between the planes α and β.

EXERCISE 14

Let α be a plane determined by the points $(9,0,0),(10,0,1)$ and $(9,4,0)$, and the plane β determined by $(2,0,0),(7,0,5)$ and $(2,4,0)$. Calculate the bisector plane of α and β.

Calculate the bisector plane of the planes α and β.

EXERCISE 15

Calculate the distance between the line $r:\left\{\begin{array}{l}x=3-3 t \\ y=6-t \\ z=6 t\end{array}\right.$ and the plane
$\alpha: 6 x+12 y+5 z-66=0$ which is parallel to the line.

Calculate the distance between the the line r and the plane β.

EXERCISE 16

Calculate the distance from the point $A(7,1,5)$ to the line $r: \frac{x-1}{4}=\frac{y}{2}=\frac{z-5}{-3}$.

Calculate the distance between the line r and the point A.

EXERCISE 17

Calculate the distance between the lines $r: \frac{x-1}{4}=\frac{y}{2}=\frac{z-5}{-3}$ and $s:\left\{\begin{array}{l}x=7+4 t \\ y=1+2 t \\ z=5-3 t\end{array}\right.$.

Calculate the distance between the lines r and s.

EXERCISE 18

Calculate the distance between the lines $r((13,0,5)(17,5,2))$ and $s((3,2,0)(8,3,4))$.

Calculate the distance between the lines r and s.

EXERCISE 19

Calculate the distance from the point $A(1,2,5)$ to the plane $\alpha: 2 x+2 y-z-5=0$.

Calculate the distance between the point A and the plane α.

EXERCISE 20

Calculate the distance from the line $r: \frac{x-1}{2}=\frac{y}{2}=\frac{z-1}{2}$ to the plane $\alpha: x-z=2$.

Calculate the distance between the plane α (perpendicular to $P V$) and the line r.

EXERCISE 21

Calculate the distance from the point $P(1,3,-1)$ to the line $r:\left\{\begin{array}{l}x-y=0 \\ x+y-z=0\end{array}\right.$.

Calculate the distance between the point P and the line r.

EXERCISE 22

Calculate the distance between the lines $r: \frac{x+3}{3}=\frac{y-9}{-2}=\frac{z-8}{-2}$ and $s: \frac{x-3}{-2}=\frac{y-2}{1}=\frac{z-1}{2}$.

Calculate the distance between the lines r and s.

EXERCISE 23

Calculate the angle between the line $r:\left\{\begin{array}{l}x-3 y=1 \\ 2 y=z\end{array}\right.$ and the line s that passes through the points $(4,1,1)$ and $(1,3,3)$.

Find the angle between the lines r and s.

EXERCISE 24

Calculate the angles that the line $r:\left\{\begin{array}{l}2 x+5 z=24 \\ y=z\end{array}\right.$ form with the horizontal plane $(z=0)$ and with the vertical one $(y=0)$.

Find the angle between the line r with the projection planes $P H$ and $P V$.

EXERCISE 25

Calculate the angle between the planes $\alpha: 4 x+3 y+10 z=32$ and $\beta: 4 x-5 y-6 z=0$.

Find the angle between the planes α and β.

EXERCISE 26

Calculate the angle between the plane $\pi: 4 x-5 y-6 z=0$ and the vertical plane $(y=0)$.

Find the angle between the plane β and the projection plane $P V$.

EXERCISE 27

Define the plane α, being the line $s:\left\{\begin{array}{l}x+3 y=9 \\ 3 y+z=7\end{array}\right.$ its line of maximum inclination.

Find the plane α, being Imi its line of maximum inclination.

EXERCISE 28

Calculate the symmetric point of $A(4,2,2)$ with respect to the line
$r: \frac{x-6}{4}=\frac{y-1}{2}=\frac{z-5}{-3}$.

Find the symmetric point of A with respect to the line r.

EXERCISE 29

Define the coordinates of a square $A B C D$ knowing that:

- The line $A B$ is included in the plane $y=z$.
- \quad The line $B C$ is parallel to a plane β that is perpendicular to the horizontal plane.
- \quad The intersection between the planes β and XOY is the line that passes through the points $(0,0,0)$ and $(2,3,0)$.
- The third coordinate of the vertex B (height) is 4 .
- The distance between the points A and B is 6,5 .
- The x coordinate of the point A is 12 and its y coordinate is 2 .

Draw the rectangle $A B C D$ that is in the first quadrant.

Data:

1.The segment $A B$ is in the first bisector.
2. $B C$ is parallel to the plane β, that is perpendicular to the $P H$.
3. The elevation of B is 4.
4. The distance between the points A and B is 6,5 .
5. B is projected in the right-hand side of A.

β

EXERCISE 30

Let $P(11,-3,3)$ and $Q(--,-3,-3)$ be two points. Define the vertex of a square $A B C D$ knowing that:

- The vertex of the square are equidistant from P and Q.
- \quad The distance between the points P and Q is 10 .
- The point A is included in the plane $y=0$.
- The third coordinate of the point A (its height) is 4.

Draw the square of vertexes $A B C D$ equidistant to the points P and Q.
Data:

1. The elevation of Q is -3 and it is in the first bisector.
2. The distance between P and Q is 10 .
3. A is in the $P V$ and its elevation is 4 .

P" P^{\prime}

EXERCISE 31

Let $P(18,3,1)$ and $Q(11,6,7)$ be two points. Define the equilateral triangle $A B C$ equidistant to the points P and Q, being $A(--2 ' 5,3)$.

Draw the equilateral triangle $A B C$, equidistant to the points P and Q.
Data:
The elevation of A is 3 and the distance to $P V$ is 2,5 .
$x=5$

Q"

P"

P^{\prime}

Q'

