EXERCISE 1

Let $A(13,3,2), B(8,1,5), C(4,1,1)$ and $D(9,5,0)$ be four points, being $A B C$ and $B D C$ two planes that define a part of a roof.

- Find a line in the plane $A B D$, parallel to the plane XOY and being the height of the points of this line $3(z=3)$.
- Define the trajectory of a drop that leaves from the midpoint of the segment BC.
$A B D$ and $B D C$ are two planeV that GHLQHa roof. Draw a horizontal line with an elevation of 3 that is located in the plane $A B D$. Define the trajectory of a drop that leaves from de midpoint of the segment $B C$.

The line "t" is the trajectory of the drop.

EXERCISE 2

Let $A(9,5,0)$ and $B(6,3,3)$ be two points included in the line of intersection of two symmetric sheets of concrete.

- Define the previous planes being their slope 45‥
- Calculate the intersection of these two planes with a vertical plane that contains the line that passes through the points $(6,3, z)$ and $(4,5, z)$, and the intersection with the horizontal plane.
$A B$ is the intersection of two symmetric sheets of concrete. Draw these two planes and their intersections with a vertical plane that contains the line " p ", and the intersection with the horizontal plane. Data: the slope of the planes $=45^{\circ}$.

EXERCISE 3

Let s be a line that passes through the points $B(9,0,2)$ and $C(5,4,2)$, and r a line that passes through $D(13,4,5)$ and $E(17,0,1)$. Find the plane that is equidistant to the point $A(11,5,8)$ and to the line s, and parallel to the line r.

Draw a plane that is equidistant to the point A and to the line s, and parallel to the line r.

A'

EXERCISE 1

Let $A(13,3,2), B(8,1,5), C(4,1,1)$ and $D(9,5,0)$ be four points, being $A B C$ and $B D C$ two planes that define a part of a roof.

- Find a line in the plane $A B D$, parallel to the plane XOY and being the height of the points of this line $3(z=3)$.
- Define the trajectory of a drop that leaves from the midpoint of the segment BC.

Solution:

First of all we will calculate the implicit equation of the plane $A B D$. We will use the point $A(13,3,2)$ and the normal vector $\vec{n}_{A B C}$. This vector can be calculated by doing the vector product of $\overrightarrow{A B}=(-5,-2,3)$ and $\overrightarrow{A D}=(-4,2,-2)$.

$$
\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-5 & -2 & 3 \\
-4 & 2 & -2
\end{array}\right|=-2 \vec{\imath}-22 \vec{\jmath}-18 \vec{k} \Rightarrow \vec{n}_{A B C}=(1,11,9)
$$

Hence, the implicit equation of the plane $A B D$ is this one:

$$
\begin{gathered}
(x-13)+11(y-3)+9(z-2)=0 \Rightarrow \\
A B D: x+11 y+9 z-64=0
\end{gathered}
$$

We need the point $P=(x, y, 3)$ included in the line and the direction vector of this line $\vec{v}_{r}=$ (a, b, c) to calculate the line included in the plane $A B D$.

As the line r is included in the plane, its direction vector \vec{v}_{r} is perpendicular to the vector, $\vec{n}_{A B C}$. As the line is parallel to the plane XOY, the vector \vec{v}_{r} is perpendicular to the vector ($0,0,1$). Therefore:

$$
\left\{\begin{array} { c }
{ \vec { v } _ { r } \perp \vec { n } _ { A B C } \Rightarrow (a , b , c) \cdot (1 , 1 1 , 9) = 0 } \\
{ \vec { v } _ { r } \perp (0 , 0 , 1) \Rightarrow (a , b , c) \cdot (0 , 0 , 1) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
a=-11 b \\
c=0
\end{array} \Rightarrow \vec{v}_{r}=(-11 b, b, 0)\right.\right.
$$

We will consider $\vec{v}_{r}=(-11,1,0)$ as the direction vector. We only have to determine the point $P=(x, y, 3)$ and to do this, it is enough to take into account that the point is included in the line. Furthermore, as the line is included in the plane $A B D$, the point is also in the plane. This means that the x and y coordinates of the point have to satisfy:

$$
x+11 y=64-27 \Rightarrow x+11 y=37
$$

For example, taking $x=4$ and $y=3$, the point is $P=(4,3,3)$.

EXERCISE 1

Hence, the direction vector of the searched line is $\vec{v}_{r}=(-11,1,0)$ and the point $P=(4,3,3)$ is included in the line. The parametric equations of the line are the following:

$$
\left\{\begin{array}{c}
x=44-11 t \\
y=3+t \\
z=3
\end{array}\right.
$$

And the implicit equations of the line are:

$$
\left\{\begin{array}{c}
x+11 y-37=0 \\
z=3
\end{array}\right.
$$

- Define the trajectory of a drop that leaves from the midpoint of the segment BC.

We start by calculating the midpoint of the segment $B C$:

$$
M=\frac{B+C}{2}=(6,1,3)
$$

The drop will follow the trajectory of the line of maximum slope. We have to follow the next procedure:

- Calculate the plane $B D C$ that contains the line $B C$. Obtain the line of intersection r between this plane and the plane $O X Y$.

We will consider the vectors $\overrightarrow{B D}=(1,4,-5)$ and $\overrightarrow{B C}=(-4,0,-4)$ to calculate the plane $B D C$. We will use the point $B(8,1,5)$ to determine the plane. Therefore, the implicit equation of plane $B D C$ is:

$$
\left|\begin{array}{ccc}
x-8 & 1 & -4 \\
y-1 & 4 & 0 \\
z-5 & -5 & -4
\end{array}\right|=0 \Rightarrow B D C: \quad-2 x+3 y+2 z+3=0
$$

The line r is the intersection between the planes $B D C$ and $O X Y$, being its implicit equations:

$$
r:\left\{\begin{array}{c}
2 x+3 y+2 z+3=0 \\
z=0
\end{array}\right.
$$

- We calculate the plane π, that contains the point M and is perpendicular to r :

As the plane is perpendicular to the line, the direction vector of the line \vec{v}_{r} and the normal vector of the plane \vec{n}_{π} are parallel. We can consider that these two vectors are the same, taking this value:

$$
\left|\begin{array}{rrr}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-2 & 3 & 2 \\
0 & 0 & 1
\end{array}\right|=3 \vec{\imath}+2 \vec{\jmath} \Rightarrow \vec{n}_{\pi}=\vec{v}_{r}=(3,2,0)
$$

EXERCISE 1

Therefore, the plane π is given by:

$$
\pi: 3 x+2 y-20=0
$$

- We calculate the line of maximum slope.

This line is the intersection between the planes π and $B D C$:

$$
\left\{\begin{array}{c}
3 x+2 y-20=0 \\
-2 x+3 y+2 z+3=0
\end{array}\right.
$$

EXERCISE 2

Let $A(9,5,0)$ and $B(6,3,3)$ be two points included in the line of intersection of two symmetric sheets of concrete.

- Define the previous planes being their slope 45…
- Calculate the intersection of these two planes with a vertical plane that contains the line that passes through the points $(6,3, z)$ and $(4,5, z)$, and the intersection with the horizontal plane.

Solution:

We start the exercise by calculating the line r that passes through the points $A(9,5,0)$ and $B(6,3,3)$. The direction vector of this line is: $\overrightarrow{A B}=B-A=(6,3,3)-(9,5,0)=(-3,-2,3)$. Hence, the line r is given by this expression:

$$
r: \frac{x-9}{-3}=\frac{y-5}{-2}=\frac{z-0}{3}
$$

We calculate two planes that contain the line r :

$$
r:\left\{\begin{array} { c }
{ \frac { x - 9 } { - 3 } = \frac { y - 5 } { - 2 } } \\
{ \frac { x - 9 } { - 3 } = \frac { z } { 3 } }
\end{array} \Rightarrow \left\{\begin{array}{c}
2 x-3 y-33=0 \\
x+z-9=0
\end{array}\right.\right.
$$

The sheaf of planes that contains the line r is:

$$
\begin{array}{lc}
(2 x-3 y-33)+\lambda(x+z-9)=0, & \lambda \in \mathbb{R} \Rightarrow \\
\pi:(2+\lambda) x+3 y-\lambda z-33-9 \lambda=0, & \lambda \in \mathbb{R}
\end{array}
$$

The normal vector of the planes of the sheaf of planes is $\vec{n}_{\pi}=(2+\lambda, 3,-\lambda)$. This is also the normal vector of the planes α and β that we are looking for. These planes form an angle of 45° with the horizontal plane (plane $z=0$). The normal vector of this plane is $\vec{n}_{O X Y}=(0,0,1)$. By applying the formula to calculate the angle between two planes, we get:

$$
\begin{gathered}
\theta=\arccos \left(\frac{\left|\vec{n}_{O X Y} \cdot \vec{n}_{\pi}\right|}{\left|\vec{n}_{O X Y}\right|\left|\vec{n}_{\pi}\right|}\right) \Rightarrow \cos \theta=\frac{\left|\vec{n}_{O X Y} \cdot \vec{n}_{\pi}\right|}{\left|\vec{n}_{O X Y}\right|\left|\vec{n}_{\pi}\right|} \Rightarrow \cos 45^{\circ}=\frac{|-\lambda|}{\sqrt{(2+\lambda)^{2}+\lambda^{2}+3^{2}}} \\
\frac{1}{\sqrt{2}}=\frac{\lambda}{\sqrt{(2+\lambda)^{2}+\lambda^{2}+3^{2}}} \Rightarrow \frac{1}{2}=\frac{\lambda^{2}}{(2+\lambda)^{2}+\lambda^{2}+3^{2}} \Rightarrow(2+\lambda)^{2}+\lambda^{2}+3^{2}=2 \lambda^{2} \Rightarrow \lambda=-\frac{13}{4}
\end{gathered}
$$

One of the planes is this one:

$$
\alpha:-\frac{5}{4} x+3 y+\frac{13}{4} z-\frac{15}{4}=0
$$

EXERCISE 2

Taking into account that the planes are perpendicular and their normal vector is $\vec{n}_{\pi}=(2+$ $\lambda, 3,-\lambda)$, the normal vector of the plane β can be calculated:

$$
\vec{n}_{\alpha} \perp \vec{n}_{\beta} \Rightarrow=\left(-\frac{5}{4}, 3, \frac{13}{4}\right) \cdot(2+\lambda, 3,-\lambda)=0 \Rightarrow \frac{9}{2} \lambda=\frac{13}{2} \Rightarrow \lambda=\frac{13}{9}
$$

And β is given by:

$$
\beta: \frac{31}{9} x+3 y-\frac{13}{9} z-\frac{15}{4}=0
$$

Finally, the intersection between the planes α and β with the line that passes through the points $P(6,3, a)$ and $Q(4,5, a)$ is calculated. We define the line s that contains these two points.
$\overrightarrow{P Q}=Q-P=(4,5, a)-(6,3, a)=(-2,2,0)$. And we write the parametric equations of the line s :

$$
s:\left\{\begin{array}{c}
x=4-2 t \\
y=5+2 t \\
z=a
\end{array}\right.
$$

We calculate the point of intersection of s with the plane α :

$$
-\frac{5}{4}(4-2 t)+3(5+2 t)+\frac{13}{4} a-\frac{15}{4}=0 \Rightarrow 34 t=-25-13 a \Rightarrow t=\frac{-25-13 a}{34}
$$

Hence, the point of intersection is: $S_{1}\left(\frac{93+13 a}{17}, \frac{60-13 a}{17}, a\right)$.
In the same way, we calculate the point of intersection of s with the plane β :

$$
\frac{31}{9}(4-2 t)+3(5+2 t)-\frac{13}{9} a-\frac{15}{4}=0 \Rightarrow-8 t=-\frac{901}{4}+13 a \Rightarrow t=\frac{901-52 a}{32}
$$

Being the point of intersection: $S_{2}\left(\frac{-837+52 a}{16}, \frac{981-52 a}{16}, a\right)$.

EXERCISE 3

Let s be a line that passes through the points $B(9,0,2)$ and $C(5,4,2)$, and r a line that passes through $D(13,4,5)$ and $E(17,0,1)$. Find the plane that is equidistant to the point $A(11,5,8)$ and to the line s, and parallel to the line r.

Solution:

First, we calculate the parametric equations of the lines s and r :

$$
\begin{gathered}
\overrightarrow{B C}=(-4,4,0) \Rightarrow s:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
9 \\
0 \\
2
\end{array}\right)+\lambda\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right) \\
\overrightarrow{D E}=(4,-4,-4) \Rightarrow r:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
17 \\
0 \\
1
\end{array}\right)+\mu\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right)
\end{gathered}
$$

Next, we calculate the plane π that contains the point A and is perpendicular to the line s. As the plane π and the line s are perpendicular, the vectors \vec{n}_{π} and \vec{v}_{s} are parallel. Therefore, $\vec{n}_{\pi}=(-1,1,0)$. And π is given by:

$$
\pi:-1(x-11)+1(y-5)+0(z-8) \Rightarrow \pi: x-y-6=0
$$

We follow the process by calculating the point of intersection P between the plane π and the line s. After having calculated P, the midpoint M of the segment $\overline{A P}$ is calculated:

$$
\begin{aligned}
& \left\{\begin{array}{c}
x-y-6=0 \\
x=9-\lambda \\
y=\lambda \\
z=2
\end{array} \Rightarrow \lambda=\frac{3}{2} \Rightarrow P=\left(\frac{15}{2}, \frac{3}{2}, 2\right)\right. \\
& M=\frac{A+P}{2}=\frac{(11,5,8)+\left(\frac{15}{2}, \frac{3}{2}, 2\right)}{2}=\left(\frac{37}{4}, \frac{13}{4}, 5\right)
\end{aligned}
$$

Now we find the plane π^{\prime}, that contains M and is perpendicular to the line s. Let $\vec{v}_{\pi^{\prime}}=$ (a, b, c) be the normal vector of π. As this plane and the line s are perpendicular, their scalar product is zero:

$$
\vec{v}_{\pi^{\prime}} \cdot \vec{v}_{S}=0 \Rightarrow(a, b, c) \cdot(-1,1,0)=0 \Rightarrow-a+b=0 \Rightarrow a=b \forall c \Rightarrow \vec{v}_{\pi^{\prime}}=(a, a, c)
$$

As π^{\prime} and r are parallel, the normal vector of the plane and the direction vector of the line are perpendicular (scalar product zero):

$$
\left.\vec{v}_{\pi^{\prime}} \cdot \vec{v}_{r}=0 \Rightarrow(a, a, c) \cdot(1,-1,-1) \Rightarrow a-a-c=0\right) \Rightarrow c=0
$$

As a consequence, the normal vector of the plane π^{\prime} is given by $\vec{v}_{\pi^{\prime}}=(a, a, 0)$ da. We will consider $\vec{v}_{\pi^{\prime}}=(1,1,0)$ as its normal vector.
Finally, the equation of the plane π^{\prime} can be calculated using its normal vector and the point M included in this plane:

$$
\pi^{\prime}: 1\left(x-\frac{37}{4}\right)+1\left(y-\frac{13}{4}\right)+0(z-5) \Rightarrow x+y-\frac{50}{4}=0
$$

