EXERCISE 1

Calculate the distance between the points $A(4,3,3)$ and $B(0,3,6)$.

Calculate the distance between the points A and B.

As the line $A B$ is parallel to the $P V$, we can see the real magnitude of $A B$ in the vertical projection.

EXERCISE 1

Calculate the distance between the points $A(4,3,3)$ and $B(0,3,6)$.

Solution:

The distance between the points $A(4,3,3)$ and $B(0,3,6)$ can be calculated using the next expression:

$$
d(A, B)=\sqrt{(4-0)^{2}+(3-3)^{2}+(3-6)^{2}}=\sqrt{25}=5
$$

EXERCISE 2

Calculate the distance from the point $A(1,0,1)$ to the plane $\alpha: 4 x+y+4 z=36$.

Calculate the distance between the point A and the plane α.

EXERCISE 2

Calculate the distance from the point $A(1,0,1)$ to the plane $\alpha: 4 x+y+4 z=36$.

Solution:

$\vec{n}_{\alpha}=(4,1,4)$ is the normal vector of the plane α. We obtain the distance between a point and a plane applying the formula:

$$
d(A, \alpha)=\frac{|4 \cdot 1+1 \cdot 0+4 \cdot 1-36|}{\sqrt{4^{2}+1^{2}+4^{2}}}=\frac{28}{\sqrt{33}}
$$

EXERCISE 3

Calculate the bisector plane of the planes $\alpha: 4 x+y+4 z=36$ and $\beta: 4 x+y+4 z=8$.

Draw the bisector plane of the planes α and β.

EXERCISE 3

Calculate the bisector plane of the planes $\alpha: 4 x+y+4 z=36$ and $\beta: 4 x+y+4 z=8$.

Solution:

The planes α and β are parallel, being their normal vector ($4,1,4$). So it is possible to calculate their bisector plane. These are the steps that have to be followed:

- Consider any point of one of the planes. For example, we will choose the point $P_{\beta}=(0,8,0)$ in the plane β and we will calculate the line r that passing though P_{β} is perpendicular to both planes. As r is perpendicular to both planes, its direction vector is the normal vector of the planes. The parametric equations of r are the following: $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 8 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}4 \\ 1 \\ 4\end{array}\right) \Rightarrow r:\left\{\begin{array}{l}x=4 \lambda \\ y=8+\lambda \\ z=4 \lambda\end{array}\right.$
- We calculate the point of intersection between r and the plane α :

$$
4(4 \lambda)+(8+\lambda)+4(4 \lambda)=36 \Rightarrow \lambda=\frac{28}{33}
$$

The point of intersection is $P_{\alpha}=\left(\frac{112}{33}, \frac{292}{33}, \frac{112}{33}\right)$.

- We calculate the midpoint of the segment with end points P_{β} and P_{α} :

$$
P_{\gamma}=\frac{P_{\beta}+P_{\alpha}}{2}=\left(\frac{56}{33}, \frac{273}{33}, \frac{56}{33}\right)
$$

- We require P_{γ} to be included in the bisector plane:

$$
4\left(x-\frac{56}{33}\right)+\left(y-\frac{273}{33}\right)+4\left(z-\frac{56}{33}\right)=0
$$

And the bisector plane of α and β is given by the expression:

$$
4 x+y+4 z-22=0
$$

EXERCISE 4

The distance from the point $P(1,2,3)$ to the point A located in the axis of abscissas is 7 . Calculate the coordinates of the point A.

Find the projections of the point A if we know that this is located in the floor-line, being the distance to the point $P 70 \mathrm{~mm}$.

EXERCISE 4

The distance from the point $P(1,2,3)$ to the point A located in the axis of abscissas is 7 . Calculate the coordinates of the point A.

Solution:

As A is located in the axis of abscissas, its y and z coordinates are 0 : $A=(x, 0,0)$. It is known that, $d(P, A)=|\overrightarrow{P A}|=7$. As a consequence:

$$
\begin{gathered}
\sqrt{(x-1)^{2}+(0-2)^{2}+(0-3)^{2}}=7 \Rightarrow(x-1)^{2}+4+9=49 \Rightarrow \\
(x-1)^{2}=36 \Rightarrow x-1= \pm 6 \Rightarrow\left\{\begin{array}{l}
x-1=6 \Rightarrow x=7 \\
x-1=-6 \Rightarrow x=-5
\end{array}\right.
\end{gathered}
$$

Two points that satisfy the requirements are obtained: $A_{1}=(7,0,0)$ and $A_{2}=(-5,0,0)$.

EXERCISE 5

Calculate the distance from the point $P(3,4,5)$ to the line $r: \frac{x+1}{1}=\frac{y+2}{2}=\frac{z+5}{-1}$.

Find the distance between the point P and the line r.

This exercise has been solved by changing the projection planes.

The distance has been calculated using a triangle of distances.

EXERCISE 5

Calculate the distance from the point $P(3,4,5)$ to the line $r: \frac{x+1}{1}=\frac{y+2}{2}=\frac{z+5}{-1}$.

Solution:

The distance from a point to a line can be calculated using the formula:

$$
d(P, r)=\frac{\left|\overrightarrow{A P} \wedge \vec{v}_{r}\right|}{\left|\vec{v}_{r}\right|}
$$

$\vec{v}_{r}=(1,2,-1)$ is the direction vector of the line r, and $A=(-1,-2,-5)$ is a point included in the line:

$$
\overrightarrow{A P}=P-A=(4,6,10) \Rightarrow \overrightarrow{A P} \wedge \vec{v}_{r}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
4 & 6 & 10 \\
1 & 2 & -1
\end{array}\right|=-26 \vec{\imath}+14 \vec{\jmath}+2 \vec{k}
$$

Therefore, the distance between the point and the line is:
$d(P, r)=\frac{\left|\overrightarrow{A P} \wedge \vec{v}_{r}\right|}{\left|\vec{v}_{r}\right|}=\frac{\sqrt{26^{2}+14^{2}+2^{2}}}{\sqrt{1^{2}+2^{2}+(-1)^{2}}}=\sqrt{146}$.

