
Calculate the distance between the points A and B.
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As the line AB is parallel to the PV, we can see the real magnitude of AB in the vertical projection. 
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EXERCISE 1 

 

Calculate the distance between the points (4,3,3)A  and (0,3,6)B . 
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EXERCISE 1 

 

Calculate the distance between the points (4,3,3)A  and (0,3,6)B . 

 

Solution: 

The distance between the points (4,3,3)A  and (0,3,6)B  can be calculated using the next 

expression: 

2 2 2( , ) (4 0) (3 3) (3 6) 25 5d A B          

 



Calculate the distance between the point A and the plane α.
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EXERCISE 2 

 

Calculate the distance from the point (1,0,1)A  to the plane : 4 4 36x y z    . 
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EXERCISE 2 

 

Calculate the distance from the point (1,0,1)A  to the plane : 4 4 36x y z    . 

 

Solution: 

(4,1,4)n   is the normal vector of the plane  . We obtain the distance between a point 

and a plane applying the formula: 

2 2 2

4·1 1·0 4·1 36 28
( , )

334 1 4
d A 

  
 

 
 

  



Draw the bisector plane of the planes α and β .
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EXERCISE 3 

 

Calculate the bisector plane of the planes : 4 4 36x y z     and : 4 4 8x y z    . 
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EXERCISE 3 

 

Calculate the bisector plane of the planes : 4 4 36x y z     and : 4 4 8x y z    . 

 

Solution: 

The planes   and   are parallel, being their normal vector (4,1,4) . So it is possible to 

calculate their bisector plane. These are the steps that have to be followed: 

- Consider any point of one of the planes. For example, we will choose the point 

(0,8,0)P   in the plane   and we will calculate the line r  that passing though P  

is perpendicular to both planes. As r  is perpendicular to both planes, its direction 

vector is the normal vector of the planes. The parametric equations of r  are the 

following: 

0 4 4

8 1 : 8

0 4 4

x x

y r y

z z



 



      
     

         
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- We calculate the point of intersection between r  and the plane  : 

28
4(4 ) (8 ) 4(4 ) 36

33
          

The point of intersection is 
112 292 112

, ,
33 33 33

P
 

  
 

. 

- We calculate the midpoint of the segment with end points P  and P : 

56 273 56
, ,

2 33 33 33

P P
P
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- We require P  to be included in the bisector plane: 

56 273 56
4 4 0

33 33 33
x y z

     
          

     
 

And the bisector plane of   and   is given by the expression: 

4 4 22 0x y z     

  



Find the projections of the point A if we know that this is located in the floor-line, being the 
distance to the point P 70 mm.
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EXERCISE 4

 

 

The distance from the point (1,2,3)P  to the point A  located in the axis of abscissas is 7. 

Calculate the coordinates of the point A . 



Elisabete Alberdi Celaya, Irantzu Álvarez González, Aitziber Unzueta Inchaurbe, Mª Isabel Eguia Ribero and Mª José García López 

EXERCISE 4 

 

The distance from the point (1,2,3)P  to the point A  located in the axis of abscissas is 7. 

Calculate the coordinates of the point A . 

 

Solution: 

As A  is located in the axis of abscissas, its y  and z  coordinates are 0: ( ,0,0)A x . 

It is known that, ( , )d P A  |𝑃𝐴⃗⃗⃗⃗  ⃗| = 7. As a consequence: 

2 2 2 2( 1) (0 2) (0 3) 7 ( 1) 4 9 49x x             

2
1 6 7

( 1) 36 1 6
1 6 5

x x
x x

x x

   
       

     
 

 

Two points that satisfy the requirements are obtained: 1 (7,0,0)A   and 2 ( 5,0,0)A   . 



Find the distance between the point P and the line r. 
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This exercise has been solved by changing the projection planes. 

The distance has been calculated using a triangle of distances. 
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EXERCISE 5

 

 

Calculate the distance from the point (3,4,5)P  to the line 
1 2 5

:
1 2 1

x y z
r

  
 


. 
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EXERCISE 5 

 

Calculate the distance from the point (3,4,5)P  to the line 
1 2 5

:
1 2 1

x y z
r

  
 


. 

 

Solution: 

The distance from a point to a line can be calculated using the formula: 

( , )
r

r

AP v

v
d P r 


 

(1,2, 1)rv    is the direction vector of the line r , and ( 1, 2, 5)A      is a point included in 

the line: 

(4,6,10) 4 6 10 26 14 2

1 2 1

r

i j k

AP P A AP v i j k         



 

Therefore, the distance between the point and the line is:

2 2 2

2 2 2

26 14 2
( , ) 146

1 2 ( 1)
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d
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v
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 
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
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EXERCISE 5 

 

Calculate the distance from the point (3,4,5)P  to the line 
1 2 5

:
1 2 1

x y z
r

  
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
. 

 

Solution: 

The distance from a point to a line can be calculated using the formula: 

( , )
r

r

AP v

v
d P r 


 

(1,2, 1)rv    is the direction vector of the line r , and ( 1, 2, 5)A      is a point included in 

the line: 
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Therefore, the distance between the point and the line is:
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EXERCISE 5 

 

Calculate the distance from the point (3,4,5)P  to the line 
1 2 5

:
1 2 1

x y z
r

  
 


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Solution: 

The distance from a point to a line can be calculated using the formula: 
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(1,2, 1)rv    is the direction vector of the line r , and ( 1, 2, 5)A      is a point included in 

the line: 

Therefore, the distance between the point and the line is:
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𝐴𝑃�����⃗ = 𝑃 − 𝐴 = (4,6,10) ⇒  𝐴𝑃�����⃗ ∧ 𝑣⃗𝑟 = �
𝚤 𝚥 𝑘�⃗
4 6 10
1 2 −1

� = −26𝚤 + 14𝚥 + 2𝑘�⃗  




