EXERCISE 1

Find the equation of the line that containing the point $P(5,3,2)$ is perpendicular to the plane that passes through the points $(7,0,0)$ and $(4,3,0)$ and is perpendicular to the plane XOY. Obtain the intersection.

Draw from the point P a line p that is perpendicular to α. Find also the intersection between the line and the plane (I).

EXERCISE 1

Find the equation of the line that containing the point $P(5,3,2)$ is perpendicular to the plane that passes through the points $(7,0,0)$ and $(4,3,0)$ and is perpendicular to the plane XOY. Obtain the intersection.

Solution:

First, we obtain the equation of the plane α that passes through the points $(7,0,0)$ and $(4,3,0)$ using a point and two vectors included in it.

For example, the vector $\vec{u}=(7,0,0)-(4,3,0)=(3,-3,0)$ is included in the plane. On the other hand, the plane α is perpendicular to the plane $X O Y$, so the vector $(0,0,1)$ is also included in it. Therefore, the implicit equation of the plane α is:

$$
\alpha:\left|\begin{array}{ccc}
x-7 & 0 & 3 \\
y & 0 & -3 \\
z & 1 & 0
\end{array}\right|=0 \Rightarrow \alpha: x+y=7
$$

As we can observe, the normal vector of the plane α is $\vec{n}=(1,1,0)$.
The line we are looking for is perpendicular to the plane calculated above, hence its direction vector is $\vec{n}=(1,1,0)$. Furthermore, as the line passes through the point $P=(5,3,2)$ the parametric equations of the line r are:

$$
r:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
3 \\
2
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

And the implicit equations are:

$$
\left\{\begin{array} { c }
{ x = 5 + \lambda } \\
{ y = 3 + \lambda } \\
{ z = 2 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x-5=y-3 \\
z=2
\end{array} \Rightarrow r:\left\{\begin{array}{c}
x-y=2 \\
z=2
\end{array}\right.\right.\right.
$$

Finally, the requested intersection is: $\left\{\begin{array}{c}x-y=2 \\ z=2 \\ x+y=7\end{array} \Rightarrow\left\{\begin{array}{c}x=\frac{9}{2} \\ y=\frac{5}{2} \\ z=2\end{array}\right.\right.$
So, the intersection between the line r and the plane α is:

$$
\left(\frac{9}{2}, \frac{5}{2}, 0\right)
$$

EXERCISE 2

Find the plane that containing the point $P(8,5,4)$ is perpendicular to the line that passes through the points $(7,2,0)$ and $(0,2,6)$. Obtain the intersection.

Draw from the point P a plane α that is perpendicular to r. Find also the intersection point between the line and the plane (I).

EXERCISE 2

Find the plane that containing the point $P(8,5,4)$ is perpendicular to the line that passes through the points $(7,2,0)$ and $(0,2,6)$. Obtain the intersection.

Solution:

Let r be the line that passes through the points $(7,2,0)$ and $(0,2,6)$. Hence, the direction vector of the line is: $\vec{v}_{r}=(7,2,0)-(0,2,6)=(7,0,-6)$.
The normal vector of the plane π and the direction vector of the line r are parallel:

$$
\vec{v}_{r} \| \vec{n}_{\pi} \Rightarrow \vec{n}_{\pi}=(7,0,-6)
$$

So, $\pi: 7 x+0 y-6 z+k=0$.
Furthermore, as the point $P(8,5,4)$ is included in the plane, it has to satisfy the equation of the plane:

$$
7 \cdot 8-6 \cdot 4+k=0 \Rightarrow k=-32
$$

In conclusion, the equation of the plane π is:

$$
\pi: 7 x-6 z-32=0
$$

Next, we obtain the parametric equations of the line r to compute the intersection of this line and the plane π.

$$
r:\left\{\begin{array}{c}
x=7+7 \lambda \\
y=2 \\
z=-6 \lambda
\end{array}\right.
$$

We consider $r \cap \pi$ by substituting a generic point $(x, y, z) \in r$ in the plane:

$$
7(7+7 \lambda)+36 \lambda-32=0 \Rightarrow 49+49 \lambda+36 \lambda-32=0 \Rightarrow \lambda=-\frac{1}{5}
$$

Then the point of intersection is $Q\left(\frac{28}{5}, 2, \frac{42}{5}\right)$.

EXERCISE 3

Calculate the line that passing through the point $P(12,3,6)$ is perpendicular and intersects the line $r: \frac{x-6}{-6}=\frac{y-5}{3}=\frac{z-4}{3}$. Obtain the intersection.

Draw from the point P a line that intersects the line r and is perpendicular to it.
Find also the intersection between the two lines.

EXERCISE 3

Calculate the line that passing through the point $P(12,3,6)$ is perpendicular and intersects the line $r: \frac{x-6}{-6}=\frac{y-5}{3}=\frac{z-4}{3}$. Obtain the intersection.

Solution:

First, we define the plane π that passing through the point P has as normal vector the direction vector of the line r :

$$
\pi:-6(x-12)+3(y-3)+3(z-6)=0 \Rightarrow \pi:-2 x+y+z+15=0
$$

On the other hand, we obtain the parametric equations of the line, using its continuous equation:

$$
\frac{x-6}{-6}=\frac{y-5}{3}=\frac{z-4}{3}=\lambda \Rightarrow\left\{\begin{array}{l}
x=6-6 \lambda \\
y=5+3 \lambda \\
z=4+3 \lambda
\end{array}\right.
$$

We obtain the point Q, the intersection between the plane π and the line r by substituting these values in the equation of the plane:

$$
\begin{gathered}
-2(6-6 \lambda)+1(5+3 \lambda)+1(4+3 \lambda)+15=0 \Rightarrow \lambda=-2 / 3 \\
\left\{\begin{array} { l }
{ x = 6 - 6 (- 2 / 3) } \\
{ y = 5 + 3 (- 2 / 3) } \\
{ z = 4 + 3 (- 2 / 3) }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=10 \\
y=3 \\
z=2
\end{array} \Rightarrow Q=(10,3,2)\right.\right.
\end{gathered}
$$

Then, the line we are looking for is the line that passes through the points P and Q:

$$
p:\left\{\begin{array}{c}
\mathrm{y}=3 \\
2 \mathrm{x}-\mathrm{z}=18
\end{array}\right.
$$

EXERCISE 4

Let r be the line determined by the points $(4,1,3)$ and $Q(0,1,6)$, and α the plane determined by the points $(10,0,0),(6,0,5)$ and $(4,5,0)$. Find the planes that containing the line r are perpendicular to the plane α.

Draw from the points P and Q perpendicular planes to the plane α.

EXERCISE 4

Let r be the line determined by the points $(4,1,3)$ and $Q(0,1,6)$, and a the plane determined by the points $(10,0,0),(6,0,5)$ and $(4,5,0)$. Find the planes that containing the line r are perpendicular to the plane α.

Solution:

The procedure to obtain the planes that containing the line r are perpendicular to the plane α is the following:

- Calculate the equation of the line r : We obtain the parametric equations of the line using the point Q and the direction vector $\vec{u}=Q-P=(-4,0,3)$:

$$
r:\left\{\begin{array}{c}
x=0-4 \lambda \\
y=1 \\
z=6+3 \lambda
\end{array}\right.
$$

Its implicit equations are: $\left\{\begin{array}{c}\frac{x}{4}=\frac{z-6}{3} \\ y=1\end{array} \Rightarrow r:\left\{\begin{array}{c}3 x-4 z=24 \\ y=1\end{array}\right.\right.$

- Obtain the sheaf of intersecting planes that contain the line r :

The expression of the planes that contain the line r is:

$$
(y-1)+\lambda(3 x+4 z-24)=0 \Rightarrow 3 \lambda x+y+4 \lambda z-24 \lambda-1=0
$$

- Compute the normal vector of the plane α : We consider two direction vectors of the plane, for example $(6,0,5)-(10,0,0)=(-4,0,5)$ and $(4,5,0)-(10,0,0)=$ $(-6,5,0)$, and we compute the vector product of them:

$$
\vec{n}_{\alpha}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-4 & 0 & 5 \\
-6 & 5 & 0
\end{array}\right|=-25 \vec{\imath}-30 \vec{\jmath}-20 \vec{k}
$$

Therefore, the normal vector of the plane α is $\vec{n}=(5,6,4)$.

- Obtain the planes that containing the line r are perpendicular to the plane α :

Since the planes we are looking for are perpendicular to the plane α, their associated vector is perpendicular to the vector \vec{n}_{α} :

$$
(3 \lambda, 1,4 \lambda) \cdot(5,6,4)=0 \Rightarrow \lambda=\frac{-6}{31}
$$

By substituting this value in the expression obtained in the second point of this exercise, we obtain the plane that containing the line r is perpendicular to the plane α :

$$
\begin{gathered}
3\left(\frac{-6}{31}\right) x+y+4\left(\frac{-6}{31}\right) z-24\left(\frac{-6}{31}\right)-1=0 \Rightarrow \\
18 \mathrm{x}-31 \mathrm{y}+24 \mathrm{z}-113=0
\end{gathered}
$$

