EXERCISE 1

Calculate the intersection between the lines $r:\left\{\begin{array}{c}x+3 y=13 \\ y=z\end{array}\right.$ and $s:\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$ and the planes XOY and XOZ.

Find the traces of the lines r and s.

THERE IS NO HORIZONTAL TRACE BECAUSE THE LINE IS PARALLEL TO PH.

EXERCISE 1

Calculate the intersection between the lines $r:\left\{\begin{array}{c}x+3 y=13 \\ y=z\end{array}\right.$ and $s:\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$ and the planes XOY and XOZ.

Solution:

To obtain the intersection between a line and a plane we only have to solve the system formed by their equations. Next, we calculate the requested intersections:

- Intersection between the line r and the plane $X O Y$:

$$
\left\{\begin{array} { c }
{ x + 3 y = 1 3 } \\
{ y = z } \\
{ z = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=13 \\
y=0 \\
z=0
\end{array}\right.\right.
$$

The intersection between the line r and the plane $X O Y$ is the point $(13,0,0)$.

- Intersection between the line r and the plane XOZ:

$$
\left\{\begin{array} { c }
{ x + 3 y = 1 3 } \\
{ y = z } \\
{ y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x=13 \\
y=0 \\
z=0
\end{array}\right.\right.
$$

The intersection between the line r and the plane XOZ is the point $(13,0,0)$.

- Intersection between the line s and the plane $X O Y$:

First of all we calculate the implicit equation of the line s :

$$
s:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
2
\end{array}\right)+\mu\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
x=3+3 \mu \\
y=2 \mu \\
z=2
\end{array}\right.
$$

Making the expressions of the parameter μ equal:

$$
\frac{x-3}{3}=\frac{y}{2} \Rightarrow 2 x-6=3 y
$$

Therefore, the implicit equations of the line s are $\left\{\begin{array}{c}2 x-3 y=6 \\ z=2\end{array}\right.$
We solve the following system to obtain the intersection between the line s and the plane $X O Y$:

EXERCISE 1

$\left\{\begin{array}{c}2 x-3 y=6 \\ z=2 \\ z=0\end{array} \Rightarrow\right.$ The system is incompatible, so the plane and the line do not intersect \Rightarrow the line and the plane are parallel.

- Intersection between the line s and the plane XOZ:

Similarly, we solve the system formed by the implicit equations of the line and the plane:

$$
\left\{\begin{array} { c }
{ 2 x - 3 y = 6 } \\
{ z = 2 } \\
{ y = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=3 \\
y=0 \\
z=2
\end{array}\right.\right.
$$

The intersection between the line s and the plane $X O Z$ is the point $(3,0,2)$.

EXERCISE 2

Calculate the values of the real parameters a and b so that the plane $\alpha: 10 x-$ $30 y-8 z=10$ contains the line that passes through the points $(4, a, 4)$ and (7, $b,-1$).

Find the horizontal projection of the line r so that it is included in the plane α.

EXERCISE 2

Calculate the values of the real parameters a and b so that the plane $\alpha: 10 x-$ $30 y-8 z=10$ contains the line that passes through the points $(4, a, 4)$ and ($7, b,-1$).

Solution:

The line that passes through the points $A(4, a, 4)$ and $B(7, b,-1)$ will lie in the plane α that contains the points A and B.

The plane α contains the point $A(4, a, 4)$ if:

$$
10 \cdot 4-30 a-8 \cdot 4=10 \Rightarrow-30 a=2 \Rightarrow a=-\frac{1}{15}
$$

The plane α contains the point $B(7, b,-1)$ if:

$$
10 \cdot 7-30 b+8=10 \Rightarrow-30 b=-68 \Rightarrow b=\frac{34}{15}
$$

Therefore, the line that passes through the points $(4, a, 4)$ and $(7, b,-1)$ lies in the plane α if $a=-\frac{1}{15}$ and $b=\frac{34}{15}$.

EXERCISE 3

Calculate the values of the parameters a and b so that the plane that passes through the points $P=(6,0,0), Q=(2,0,2)$ and $R=(6,3,0)$ contains the line $r:\left\{\begin{array}{c}3 x-3 y-12=0 \\ y(b-a)-3 z+3 a=0\end{array}\right.$.

Find the vertical projection of the line r so that it is included in the plane α.

EXERCISE 3

Calculate the values of the parameters a and b so that the plane that passes through the points $P=(6,0,0), Q=(2,0,2)$ and $R=(6,3,0)$ contains the line $r:\left\{\begin{array}{c}3 x-3 y-12=0 \\ y(b-a)-3 z+3 a=0\end{array}\right.$.

Solution:

First, we obtain the plane π that contains the points P, Q and R. To obtain the equation of the plane we use two vectors included in it, for example $\overrightarrow{P Q}=$ $(-4,0,2)$ and $\overrightarrow{P R}=(0,3,0)$.

$$
\begin{gathered}
\left|\begin{array}{crr}
x-6 & -4 & 0 \\
y & 0 & 3 \\
z & 2 & 0
\end{array}\right|=0 \Rightarrow(x-6)\left|\begin{array}{ll}
0 & 3 \\
2 & 0
\end{array}\right|-y\left|\begin{array}{rr}
-4 & 0 \\
2 & 0
\end{array}\right|+z\left|\begin{array}{rr}
-4 & 0 \\
0 & 3
\end{array}\right|=0 \\
\Rightarrow-6(x-6)-12 z=0 \\
\pi: x+2 z-6=0
\end{gathered}
$$

Next, we consider the following linear equations system:

$$
r \cap \pi:\left\{\begin{array}{c}
3 x-3 y-12=0 \\
y(b-a)-3 z+3 a=0 \\
x+2 z-6=0
\end{array}\right.
$$

being M the coefficient matrix and M^{\prime} the augmented matrix.

$$
\left(M \mid M^{\prime}\right)=\left(\begin{array}{ccr|r}
3 & -3 & 0 & -12 \\
0 & b-a & -3 & 3 a \\
1 & 0 & 2 & -6
\end{array}\right)
$$

The line r lies in the plane π if $\operatorname{rank}(M)=\operatorname{rank}\left(M^{\prime}\right)=2<$ number of unknowns $=3$.
The rank of the matrix M is greater or equal to 2 , since $\left|\begin{array}{rr}3 & -3 \\ 1 & 0\end{array}\right|=3 \neq 0$.
So, the following three minors must be null:

$$
\begin{gathered}
\left|\begin{array}{ccc}
3 & -3 & 0 \\
0 & b-a & -3 \\
1 & 0 & 2
\end{array}\right|=0 \Rightarrow 2 b-2 a+3=0 \quad \text { eta }\left|\begin{array}{ccc}
3 & -3 & -12 \\
0 & b-a & 3 a \\
1 & 0 & -6
\end{array}\right|=0 \Rightarrow \\
2 b+a=0
\end{gathered}
$$

Solving the system $\left\{\begin{array}{c}2 b-2 a+3=0 \\ 2 b+a=0\end{array}\right.$ formed by the two equations we obtain that values of the parameters are $a=1$ and $b=-\frac{1}{2}$.

Finally, we obtain the equation of the line r using these two values:

$$
r:\left\{\begin{array} { c }
{ 3 x - 3 y - 1 2 = 0 } \\
{ - \frac { 3 } { 2 } y - 3 z + 3 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
x-y=4 \\
y+6 z=6
\end{array}\right.\right.
$$

EXERCISE 4
Determine the coordinate z so that the plane $\alpha:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ contains the point $P=(3,4, z)$.

Find the vertical projection of the point P so that it is included in the plane $A B C$.

EXERCISE 4

Determine the coordinate z so that the plane $\alpha:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ contains the point $P=(3,4, z)$.

Solution:

The plane α contains the point $P=(3,4, z)$, if the point satisfices the equation of the plane. Therefore, the following system must be compatible:

$$
\left(\begin{array}{l}
3 \\
4 \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)+\lambda\left(\begin{array}{c}
6 \\
-1 \\
0
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) \Rightarrow\left\{\begin{array} { c }
{ 3 = 1 + 6 \lambda + 2 \mu } \\
{ 4 = 3 - \lambda + \mu } \\
{ z = 2 }
\end{array} \Rightarrow \left\{\begin{array} { c }
{ 1 = 3 \lambda + \mu } \\
{ 1 = - \lambda + \mu \Rightarrow } \\
{ z = 2 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\lambda=0 \\
\mu=1 \\
z=2
\end{array}\right.\right.\right.
$$

Coordinate $z=2$, so, the point P that is included in plane α is $(3,4,2)$.

EXERCISE 5

Calculate the values of the parameters a and b so that the line that passes through
the points $Q=(10, a, 6)$ and $R=(1, b, 1)$ and the plane XOZ are parallel.

1. Determine the coordinate z so that the line r contains the point $M=$ Tiuad $\overline{a b l k g}$
2. Determine the coordinates x and y so that the line r contains the point $P=(x, y, 5)$.

Find the vertical projection of the point M so that it is included in the line r. Find the horizontal projection of the line r so that it is parallel to the vertical projection plane. Find the projections of a point P with an elevation of 5 , so that it is in the line r.

EXERCISE 5

Calculate the values of the parameters a and b so that the line that passes through the points $Q=(10, a, 6)$ and $R=(1, b, 1)$ and the plane $X O Z$ are parallel.

1. Determine the coordinate z so that the line r contains the point $M=$ $(5,2, z)$.
2. Determine the coordinates x and y so that the line r contains the point $P=(x, y, 5)$.

Solution:

We calculate the direction vector of the line $r: \vec{v}_{r}=\overrightarrow{Q R}=R-Q=$ $(-9, b-a,-5)$. The line r and the plane OXZ are parallel if the vector \vec{v}_{r} and the normal vector of the plane $O X Z$ are perpendicular.

Therefore, the scalar product of both vectors must be zero:

$$
\vec{v}_{r} \perp \vec{n}_{\pi} \Rightarrow \vec{v}_{r} \cdot \vec{n}_{\pi}=0
$$

$\vec{n}_{\pi}=(0,1,0)$ is the normal vector of the plane $O X Z$, so the scalar product is:

$$
\vec{v}_{r} \cdot \vec{n}_{\pi}=0 \Rightarrow=(-9, b-a,-5) \cdot(0,1,0)=b-a=0 \Rightarrow a=b
$$

Then, the vector equation of the line r is:

$$
r:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
b \\
1
\end{array}\right)+\lambda\left(\begin{array}{c}
-9 \\
0 \\
-5
\end{array}\right), \lambda \in \mathbb{R}
$$

1.-The line r will contain the point $M=(5,2, z)$ if there exists a value of the parameter $\lambda \in \mathbb{R}$ for which the point satisfies the equation of the line.

So, if $M \in r$ is satisficed, then $\exists \lambda \in \mathbb{R}:\left(\begin{array}{l}5 \\ 2 \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ b \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-9 \\ 0 \\ -5\end{array}\right) \Rightarrow\left\{\begin{array}{c}5=1-9 \lambda \\ 2=b \\ z=1-5 \lambda\end{array} \Rightarrow\right.$

$$
b=2, \lambda=-\frac{4}{9}
$$

By substituting the obtained values in the point M we obtain that $M=\left(5,2, \frac{29}{9}\right)$.
2.- Similarly, the line r will contain the point $P=(x, y, 5)$ if there exists a value of the parameter $\lambda \in \mathbb{R}$ for which the point satisfies the parametric equations of the line.

So, if $P \in r$ is satisficed, then $\exists \lambda \in \mathbb{R}:\left(\begin{array}{l}x \\ y \\ 5\end{array}\right)=\left(\begin{array}{l}1 \\ b \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-9 \\ 0 \\ -5\end{array}\right) \Rightarrow\left\{\begin{array}{l}x=1-9 \lambda \\ y=b \\ 5=1-5 \lambda\end{array} \Rightarrow\right.$

$$
\lambda=-\frac{4}{5}
$$

By substituting $\lambda=-\frac{4}{5}$ in the point P, we obtain that the line r contains the point $P=\left(\frac{41}{5}, b, 5\right) \quad \forall b \in \mathbb{R}$.

EXERCISE 6

Find the relative position of the line $r: \frac{x}{-4}=y-2=\frac{z-3}{2}$ and the plane α, being α the plane that passing through the point $P=(3,2,0)$ has as normal vector $\vec{n}=$ $(4,12,3)$.

Define the relative position between the line r and the plane α.

The line r is not in the plane and it is not parallel to the plane, thus, they intersect.

EXERCISE 6

Find the relative position of the line $r: \frac{x}{-4}=y-2=\frac{z-3}{2}$ and the plane α, being α the plane that passing through the point $P=(3,2,0)$ has as normal vector $\vec{n}=$ $(4,12,3)$.

Solution:

We obtain the implicit equations of the line r using its parametric equations:

$$
r:\left\{\begin{array} { l }
{ \frac { x } { - 4 } = y - 2 } \\
{ \frac { x } { - 4 } = \frac { z - 3 } { 2 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+4 y-8=0 \\
x+2 z-6=0
\end{array}\right.\right.
$$

On the other hand, the implicit equation of a plane with associated vector \vec{n} that passes through the point P is:

$$
\alpha: 4(x-3)+12(y-2)+3(z-0)=0 \Rightarrow 4 x+12 y+3 z-36=0
$$

We solve the system $r \cap \alpha$ to determine the relative position of the line r and the plane α :

$$
\left\{\begin{array}{c}
x+4 y-8=0 \\
x+2 z-6=0 \\
4 x+12 y+3 z-36=0
\end{array}\right.
$$

being M the coefficient matrix and M^{\prime} the augmented matrix.

$$
\left(M \mid M^{\prime}\right)=\left(\begin{array}{ccc|c}
1 & 4 & 0 & 8 \\
1 & 0 & 2 & 6 \\
4 & 12 & 3 & 36
\end{array}\right)
$$

$\left|\begin{array}{ccc}1 & 4 & 0 \\ 1 & 0 & 2 \\ 4 & 12 & 3\end{array}\right|=-4 \neq 0, \quad$ therefore $\quad \operatorname{rank}(M)=3=\operatorname{rank}\left(M^{\prime}\right)=$ number of unknowns \Rightarrow the system $r \cap \alpha$ is compatible determinate, so the line and the plane intersect in a point.

Solving the system $r \cap \alpha$ we obtain that the intersection point is $I=(-6,7 / 2,6)$.

EXERCISE 7

Find the intersection between β, the plane that contains the points $A=(9,2,3)$, $B=(6,3,1)$ and $C=(5,1,3)$, and the plane $\alpha: 4 x-4 y-3 z=4$.

Find the intersection between the planes $A B C$ and α.

EXERCISE 7

Find the intersection between β, the plane that contains the points $A=(9,2,3)$, $B=(6,3,1)$ and $C=(5,1,3)$, and the plane $\alpha: 4 x-4 y-3 z=4$.

Solution:

We will obtain the equation of the plane with normal vector $\vec{n}=\left(n_{1}, n_{2}, n_{3}\right)$ that passes through the point $A=(9,2,3)$.

First, we determine the direction vectors $\vec{u}=B-A=(-3,1,-2)$ and
$\vec{v}=C-B=(-1,-2,2)$ of the plane β, and we obtain its normal vector as the vector product of them:

$$
\vec{n}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
-3 & 1 & -2 \\
-1 & -2 & 2
\end{array}\right|=-2 \vec{\imath}+8 \vec{\jmath}+7 \vec{k}
$$

So, the equation of β is:

$$
\begin{gathered}
-2(x-9)+8(y-2)+7(z-3)=0 \Rightarrow \\
\beta:-2 x+8 y+7 z-19=0
\end{gathered}
$$

To obtain the intersection between the plane α and the plane β, we solve the system formed by their equations:
$\left\{\begin{array}{c}-2 x+8 y+7 z=19 \\ 4 x-4 y-3 z=4\end{array}\right.$, being M the coefficient matrix and M^{\prime} the augmented matrix the followings:

$$
\left(M \mid M^{\prime}\right)=\left(\begin{array}{ccc|c}
-2 & 8 & 7 & 19 \\
4 & -4 & -3 & 4
\end{array}\right)
$$

The rank of the matrix M is 2 , moreover $\left|\begin{array}{cc}-2 & 8 \\ 4 & -4\end{array}\right| \neq 0 \Rightarrow \operatorname{rank}(M)=$ $\operatorname{rank}\left(M^{\prime}\right)=2<3=$ number of unknowns \Rightarrow The system is compatible indeterminate, being the intersection of the planes the line which implicit equation is: $\left\{\begin{array}{c}-2 x+8 y+7 z-19=0 \\ 4 x-4 y-3 z-4=0\end{array}\right.$.

EXERCISE 8

Let be r the line that passes through the points $(13,3,3)$ and $(13,3,0)$, and s the one that passes through $(6,1,6)$ and $(1,1,1)$. Determine the lines that containing the point $P=(9,2,4)$ intersect the lines r and s.

Draw all the lines that contain the point P and intersect the lines r and s.

EXERCISE 8

Let be r the line that passes through the points $(13,3,3)$ and $(13,3,0)$, and s the one that passes through $(6,1,6)$ and $(1,1,1)$. Determine the lines that containing the point $P=(9,2,4)$ intersect the lines r and s.

Solution:

First of all we will obtain the plane π that passing through the point $P(9,2,4)$ contains the line r. To do this, we consider the following not parallel two vectors:

- Direction vector of the line $r: \vec{v}_{r}=(13,3,3)-(13,3,0)=(0,0,3)$.
- Vector $\vec{v}_{p 1}=(13,3,3)-(9,2,4)=(4,1,-1)$

Therefore, the plane π is:

$$
\pi:\left\{\begin{array}{c}
x=9+4 \mu \\
y=2+\mu \\
z=4+3 \lambda-\mu
\end{array} \Rightarrow\left|\begin{array}{llc}
x-9 & 0 & 4 \\
y-2 & 0 & 1 \\
z-4 & 3 & -1
\end{array}\right|=0 \Rightarrow \pi:-3 x+12 y+3=0\right.
$$

Similarly, we obtain the plane π^{\prime} that passing through the point $P(9,2,4)$ contains the line s. We consider the following not parallel two vectors:

- Direction vector of the line $s: \vec{v}_{s}=(6,1,6)-(1,1,1)=(5,0,5)$.
- Vector $\vec{v}_{p 2}=(6,1,6)-(9,2,4)=(-3,-1,2)$.

So, the plane π^{\prime} is given by:

$$
\pi^{\prime}:\left\{\begin{array}{c}
x=9+5 \lambda-3 \mu \\
y=2-\mu \\
z=4+5 \lambda+2 \mu
\end{array} \Rightarrow\left|\begin{array}{llc}
x-9 & 5 & -3 \\
y-2 & 0 & -1 \\
z-4 & 5 & 2
\end{array}\right|=0 \Rightarrow \pi^{\prime}: x-5 y-z+5=0\right.
$$

The lines that containing the point P intersect the lines r and s are the intersection between the planes π and $\pi^{\prime}\left(\pi \cap \pi^{\prime}\right)$:

$$
\left\{\begin{array} { l }
{ - 3 x + 1 2 y + 3 = 0 } \\
{ x - 5 y - z + 5 = 0 }
\end{array} \Rightarrow \left\{\begin{array}{c}
-3 x+12 y=-3 \\
x-5 y=z-5
\end{array}\right.\right.
$$

The system is compatible indeterminate, since: $A=\left(\begin{array}{cc}-3 & 12 \\ 1 & -5\end{array}\right) \Rightarrow|A|=3$
The solution of the system is the following line:

$$
\begin{gathered}
x=\frac{\left|\begin{array}{cc}
-3 & 12 \\
z-5 & -5
\end{array}\right|}{3}=25-4 z \\
y=\frac{\left|\begin{array}{cc}
-3 & -3 \\
1 & z-5
\end{array}\right|}{3}=-z+6 \\
r:\left\{\begin{array}{c}
x=25-4 z \\
y=-z+6 \\
z=z
\end{array}\right.
\end{gathered}
$$

EXERCISE 9

Determine the lines that intersecting the lines $r:\left\{\begin{array}{c}3 x-5 y=4 \\ y=2\end{array}\right.$ and $s:\left\{\begin{array}{l}x=4 \\ z=4\end{array}\right.$ are parallel to the line t : $\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-2}$.

Draw the lines that intersect the lines r and s and are parallel to the line t.

EXERCISE 9

Determine the lines that intersecting the lines $r:\left\{\begin{array}{c}3 x-5 y=4 \\ y=2\end{array}\right.$ and $s:\left\{\begin{array}{l}x=4 \\ z=4\end{array}\right.$ are parallel to the line $t: \frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-2}$.

Solution:

The requested lines are parallel to the line t, so the direction vector of them must be parallel to the direction vector of the line t, which is $\overrightarrow{v_{t}}=(2,3,-2)$. Therefore, the direction vector of the requested line is $(2,3,-2)$.
On the other hand, using the implicit equations of line r, we compute its parametric equations and a generic point included in it:
$r:\left\{\begin{array}{c}3 x-5 y=4 \\ y=2\end{array} \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}14 / 3 \\ 2 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \Rightarrow A=\left(\frac{14}{3}, 2, \lambda\right)\right.$ is a generic point included in r.

In the same way, we calculate a generic point included in s :
$s:\left\{\begin{array}{l}x=4 \\ z=4\end{array} \Rightarrow\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 0 \\ 4\end{array}\right)+\mu\left(\begin{array}{c}0 \\ 1 \\ 10\end{array}\right) \Rightarrow B=(4, \mu, 4)\right.$ is a generic point included in s.

The requested lines intersect the lines r and s, if they pass through a point included in r and through another point included in s. So, we compute the lines that pass through the generic points A and B :

$$
\frac{x-4}{4-14 / 3}=\frac{y-\mu}{\mu-2}=\frac{z-4}{4-\lambda} \Rightarrow \frac{x-4}{-2 / 3}=\frac{y-\mu}{\mu-2}=\frac{z-4}{4-\lambda}
$$

The direction vector of this line is $\left(-\frac{2}{3}, \mu-2,4-\lambda\right)$, and this vector must be parallel to the vector $(2,3,-2)$, so:
$\frac{-2 / 3}{2}=\frac{\mu-2}{3}=\frac{4-\lambda}{-2} \Rightarrow \lambda=\frac{10}{3}$ and $\mu=1$
Substituting the obtained values in the equation of the line, we obtain that:

$$
\frac{x-4}{-2 / 3}=\frac{y-1}{1-2}=\frac{z-4}{4-\frac{10}{3}} \Rightarrow \frac{x-4}{-2 / 3}=\frac{y-1}{-1}=\frac{z-4}{2 / 3}=\delta
$$

Then, the parametric equations of the requested lines are:

$$
\left\{\begin{array}{c}
x=4-\frac{2}{3} \delta \\
y=1-\delta \\
z=4+\frac{2}{3} \delta
\end{array}\right.
$$

