EXERCISE 1

Calculate the intersection between the lines $r:\left\{\begin{array}{c}x+3 y=13 \\ y=z\end{array}\right.$ and $s:\left(\begin{array}{l}3 \\ 0 \\ 2\end{array}\right)+\mu\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$ and the planes XOY and XOZ.

Find the traces of the lines r and s.

EXERCISE 2

Calculate the values of the real parameters a and b so that the plane $\alpha: 10 x-$ $30 y-8 z=10$ contains the line that passes through the points $(4, a, 4)$ and $(7, b,-1)$.

Find the horizontal projection of the line r so that it is included in the plane α.

EXERCISE 3

Calculate the values of the parameters a and b so that the plane that passes through the points $P=(6,0,0), Q=(2,0,2)$ and $R=(6,3,0)$ contains the line $r:\left\{\begin{array}{c}3 x-3 y-12=0 \\ y(b-a)-3 z+3 a=0\end{array}\right.$.

Find the vertical projection of the line r so that it is included in the plane α.

EXERCISE 4
Determine the coordinate z so that the plane $\alpha:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}6 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ contains the point $P=(3,4, z)$.

EXERCISE 5

Calculate the values of the parameters a and b so that the line that passes through
the points $Q=(10, a, 6)$ and $R=(1, b, 1)$ and the plane XOZ are parallel.

1. Determine the coordinate z so that the line r contains the point $M=$ Tiuả $\bar{a} k \mathrm{kG}$
2. Determine the coordinates x and y so that the line r contains the point $P=(x, y, 5)$.

Find the vertical projection of the point M so that it is included in the line r. Find the horizontal projection of the line r so that it is parallel to the vertical projection plane. Find the projections of a point P with an elevation of 5 , so that it is in the line r.

M'

EXERCISE 6

Find the relative position of the line $r: \frac{x}{-4}=y-2=\frac{z-3}{2}$ and the plane α, being α the plane that passing through the point $P=(3,2,0)$ has as normal vector $\vec{n}=$ $(4,12,3)$.

Define the relative position between the line r and the plane α.

EXERCISE 7

Find the intersection between β, the plane that contains the points $A=(9,2,3)$, $B=(6,3,1)$ and $C=(5,1,3)$, and the plane $\alpha: 4 x-4 y-3 z=4$.

Find the intersection between the planes $A B C$ and α.

EXERCISE 8

Let be r the line that passes through the points $(13,3,3)$ and $(13,3,0)$, and s the one that passes through $(6,1,6)$ and $(1,1,1)$. Determine the lines that containing the point $P=(9,2,4)$ intersect the lines r and s.

Draw all the lines that contain the point P and intersect the lines r and s.

P^{\prime}
r'

EXERCISE 9

Determine the lines that intersecting the lines $r:\left\{\begin{array}{c}3 x-5 y=4 \\ y=2\end{array}\right.$ and $s:\left\{\begin{array}{l}x=4 \\ z=4\end{array}\right.$ are parallel to the line $t: \frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-2}$.

Draw the lines that intersect the lines r and s and are parallel to the line t.

