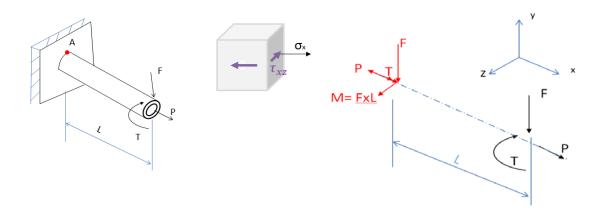


Ejercicio propuesto del tema 3: Teorías de fallo estático

ENUNCIADO:


El tubo hueco de la Figura 1 es de Aluminio 2014 con límite de fluencia de 276 MPa (material dúctil). El tubo, de longitud L=120 mm, está sometido en su extremo a unos esfuerzos cuyos valores son: P=9 kN, F=1.75 kN, T=72 Nm. Para un coeficiente de seguridad CS=4, se pide seleccionar un tubo de la tabla contigua.

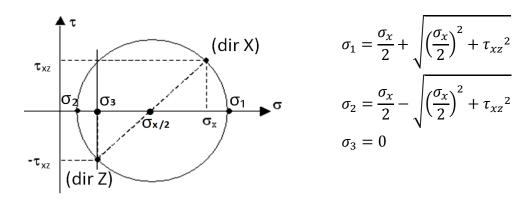
20	Tamaño	Masa	Área	Inercia	Radio	Modulo	Inercia
	(mm)	(kg/m)	(cm ²)	(cm ⁴)	de	sección	Polar
					giro	(cm ³)	(cm ⁴)
120nm					(cm)		
	12x2	0,490	0,628	0,082	0,361	0,136	0,163
	16x2	0,687	0,832	0,220	0,500	0,275	0,440
	16x3	0,956	0,879	0,273	0,472	0,341	0,545
	20x4	1,569	1,225	0,684	0,583	0,684	1,367
	25x4	2,060	2,010	1,508	0,756	1,206	3,015
	25x5	2,452	2,638	1,669	0,729	1,336	3,338
	30x4	2,550	3,140	2,827	0,930	1,885	5,652
	30x5	3,065	3,266	3,192	0,901	2,128	6,381
	42x4	3,727	3,925	8,717	1,351	4,151	17,430
	42x5	4,536	4,773	10,130	1,320	4,825	20,255
	50x4	4,512	5,809	15,409	1,632	6,164	30,810
	50x5	5,517	5,778	18,118	1,601	7,247	36,226

Figura 1. Tubo hueco y tabla de distintos tamaños de tubo.

SOLUCIÓN:

Tras estudiar la geometría y esfuerzos del sistema, se identifica como la sección más crítica la del empotramiento ya que los esfuerzos máximos se dan en el punto A.

Una vez identificada la sección más crítica, se procederá al cálculo de las tensiones. Como al sistema se le aplica una fuerza axial P, una fuerza F que genera el momento flector M y un momento torsor T:



$$\sigma_{x} = \frac{P}{A} + \frac{Mr}{Iz} = \frac{P}{\frac{\pi}{4} \cdot (\emptyset_{e}^{2} - \emptyset_{i}^{2})} + \frac{F \cdot L \cdot (\emptyset_{e}/2)}{\frac{\pi}{4} \cdot 1/16 \cdot (\emptyset_{e}^{4} - \emptyset_{i}^{4})}$$

$$= \frac{11.459,16N}{\emptyset_{e}^{2} - \emptyset_{i}^{2}} + \frac{2.139.042,4Nmm \cdot \emptyset_{e}}{\emptyset_{e}^{4} - \emptyset_{i}^{4}} = \left[\frac{N}{mm^{2}} = MPa\right]$$

$$\tau_{xz} = \frac{Tr}{J} = \frac{Tx(\emptyset e/2)}{\frac{\pi}{32}x(\emptyset e^4 - \emptyset i^4)} = \frac{366.700Nmmx\emptyset e}{\emptyset e^4 - \emptyset i^4} \left[\frac{N}{mm^2} \right]$$

Realizando el círculo de Mohr se calcularán las tensiones principales σ_1 , σ_2 y σ_3 :

Una vez obtenidos los valores de las tensiones principales, en base a la teoría de fallo de Tresca, se procede al cálculo de la tensión equivalente:

$$\sigma_{eq}^{Tr} = \max(|\sigma_1 - \sigma_2|, |\sigma_1 - \sigma_3|, |\sigma_2 - \sigma_3|) < \sigma_{yp}$$

Para que el tubo tenga una vida infinita, se debe cumplir que $\sigma_{eq}^{Tr} < \frac{\sigma_{yp}}{cs}$

$$\sigma_{yp} = 276 \, MPa \to \frac{\sigma_{yp}}{CS} = \frac{276 \, MPa}{4} = 69 \, MPa$$

$$\sigma_{eq} = |(\sigma_1 - \sigma_2)| = \left| \left(\frac{\sigma_x}{2} + \sqrt{\left(\frac{\sigma_x}{2} \right)^2 + \tau_{xz}^2} \right) - \left(\frac{\sigma_x}{2} - \sqrt{\left(\frac{\sigma_x}{2} \right)^2 + \tau_{xz}^2} \right) \right|$$

$$= 2 \cdot \sqrt{\left(\frac{\sigma_x}{2} \right)^2 + \tau_{xz}^2} \le \frac{\sigma_{yp}}{CS} = 69 \, MPa$$

El objetivo que persigue el ejercicio es identificar el tubo que capaz de soportar las solicitaciones sin fallar y para ello, se sustituyen en la ecuación las expresiones de tensiones previamente calculadas:

$$2 \cdot \sqrt{\frac{\frac{11.459,16N}{\varnothing_e^2 - \varnothing_i^2} + \frac{2.139.042,4Nmm \cdot \varnothing_e}{\varnothing_e^4 - \varnothing_i^4}}{2}}\right)^2 + \left(\frac{366.700Nmm \cdot \varnothing_e}{\varnothing_e^4 - \varnothing_i^4}\right)^2} < 69 \ MPa$$

OCW – Diseño de Máquinas

Al sustituir los distintos valores de los diámetros propuestos en la tabla, se confirma que los tubos de 25x5 y mayores, no sufrirán fallo.

Ch aut u anna an	Ø aut	Ø imb	Tr Tea [MPa]		
Ø ext x espesor	Ø ext	Ø int			
12x4	12	8	297,3		
16x2	16	12	150,9		
16x3	16	10	119,6		
20x2	20	16	93,0		
25x4	25	17	36,2		
25x5	25	15	32,1		
30x3	30	24	30,4		
30x5	30	20	21,4	< 69 MPa	
42x4	42	34	13,3	< 09 IVIPa	
42x5	42	32	11,1		
50x4	50	42	10,0		
50x5	50	40	8,3		

Se seleccionará como el tubo óptimo el de $\phi_{\rm ext}$ 25 mm x 4 mm de espesor.