

Ejercicio 7

Temas 1, 2 y 4

Itziar Martija López Maider Loizaga Garmendia

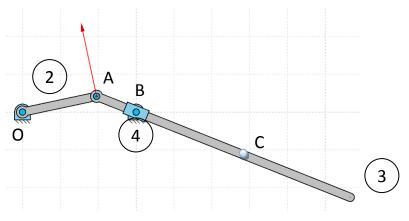
Departamento de Ingeniería Mecánica Mekanika Ingeniaritza Saila

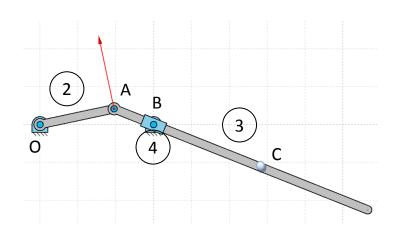
Enunciado

- 1. Obtención de los grados de libertad
- 2. Análisis estructural
- 3. Análisis gráfico de velocidades
- 4. Análisis de aceleraciones

Enunciado

- 1 Obtener los grados de libertad en el mecanismo de la figura justificando los tipos de pares que observas.
- 2 El mecanismo está formado por las barras 2 y 3. El elemento 3 se aloja en el casquillo 4:
 - a. Determinar si los elementos 2, 3 y 4 son manivela, balancín o biela.
 - b. Obtener todos los polos de rotación para la posición indicada.
- Sabiendo que el punto A se mueve con una velocidad de módulo constante en sentido antihorario, y empleando los polos obtenidos, obtener las velocidades lineales de los puntos indicados (B₃ y C, gráficamente). Deducir las velocidades angulares de los elementos.
- 4. Obtener las aceleraciones de los elementos y puntos indicados.





Para determinar el número de grados de libertad aplicamos el criterio de Grübler: en un mecanismo plano tendremos tres grados de libertad (gdl) por cada elemento, menos el fijo (N-1), y cada par de clase I restringirá 2 grados de libertad, y un par de leva, de clase II, restringirá 1 gdl.

Elementos N=4

Pares P I=3+1=4

•Pares de rotación=3 : (O); (A); 1-4 (B)

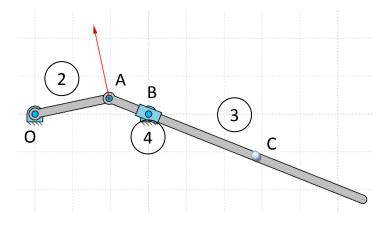
•Pares prismáticos=1: 3-4 (B)

Pares P II=0

G=3(N-1)-2*PI-PII=3*3-2*4= 9-8=1 gdl

2. Análisis estructural

- a. Determinar si los elementos 2, 3 y 4 son manivela, balancín o biela.
- b. Obtener todos los polos de rotación para la posición indicada.



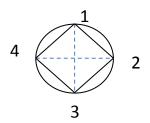
a.

La barra 2 puede dar (aparentemente) vueltas completas alrededor de O, punto fijo, luego será una manivela.

La barra 3 se mueve respecto a un centro instantáneo de rotación, luego será una biela.

El casquillo 4 oscila unido al elemento fijo por un par de rotación, luego será un balancín.

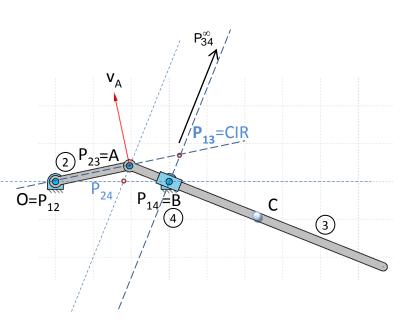
2. Análisis estructural



b. Mediante el diagrama del círculo obtenemos los polos

Polos primarios: P_{12} , P_{23} , P_{14} . P_{34}^{∞}

Tenemos que obtener P_{13 y} P₂₄



P13: P_{12}, P_{23} P_{34}^{∞}, P_{14}

En el círculo la cuerda 13 cierra los triángulos 1231 y 1431:

En el mecanismo, en la intersección de las líneas P_{12} – P_{23} y en P_{14} - P_{34}^{∞} tendremos el polo P_{13}

P24: $\begin{array}{c} P_{12}, P_{14} \\ P_{23}, P_{34}^{\infty} \end{array}$

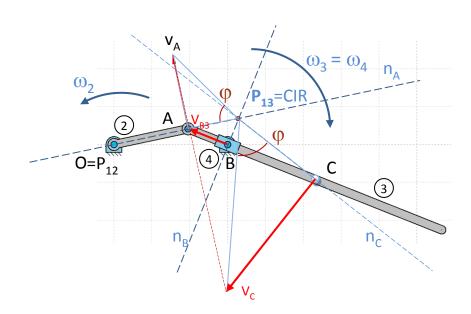
En el círculo la cuerda 24 cierra los triángulos 1241 y 2342:

En el mecanismo, en la intersección de las líneas P_{12} – P_{14} y P_{23} - P_{34}^{∞} tendremos el polo $\textbf{P_{24}}$

3. Análisis gráfico de velocidades

Conocemos las normales de las trayectorias de A, B_3 y C una vez que conocemos P_{13} . Tenemos en B dos puntos, B_3 y B_4 . B_4 no se mueve, y B_3 tiene un movimiento relativo a B_4 puesto que el elemento 3 se traslada respecto al casquillo 4.

Al estar unidos los elementos 3 y 4 por un par prismático deben tener la misma velocidad (y aceleración) angular.



Conocidos P_{12} y la velocidad de A podemos deducir $\overrightarrow{\omega}_2$.

Conocidos P_{13} (CIR $_3$) y \overrightarrow{V}_A deducimos $\overrightarrow{\omega}_3$.

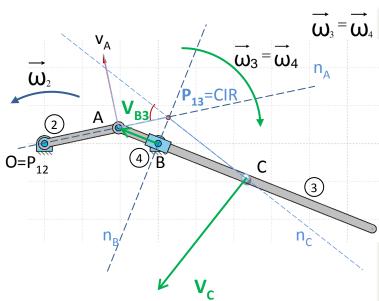
$$\overrightarrow{\omega}_3 = \overrightarrow{\omega}_4$$
 $\omega_3 = \omega_4 = \frac{\overrightarrow{v_A}}{\overrightarrow{PA}} \otimes$

Llevando el ángulo ϕ a la normal en C obtenemos $\overrightarrow{V_C}$. Como A, B₃ y C están alineados, lo estarán también los extremos de sus velocidades. Uniendo el extremo de $\overrightarrow{V_A}$ y $\overrightarrow{V_C}$ encontramos el extremo de $\overrightarrow{V_{B3}}$ en la perpendicular trazada por B a la normal de B.

4. Análisis de aceleraciones

Para realizar el cálculo de aceleraciones empleamos el método de velocidades y aceleraciones relativas. Para ello es conveniente haber realizado previamente el análisis de las velocidades por el mismo método, para tener unos sistemas de referencia claramente definidos y así no cometer errores en los cálculos de aceleraciones relativas y de Coriolis.

Debemos elegir un sistema de referencia (SR) adecuado para trabajar con el par prismático 3-4. Elegimos un SR ubicado en B_4 (punto fijo) y que gira con ω_3 , α_3 . Con ese SR planteamos la velocidad de A y la aceleración de A.



Velocidades: $SR \ en \ B_4(\vec{\omega}_3, \vec{\alpha}_3)$

$$\overrightarrow{V}_{A} = \overrightarrow{V}_{arr} + \overrightarrow{V}_{rel} = \overrightarrow{V}_{A4} + \overrightarrow{V}_{r}^{4}$$

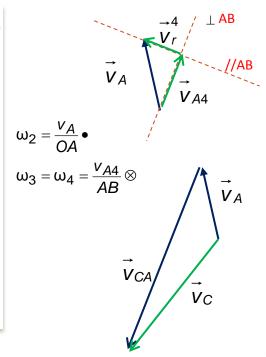
$$\downarrow AB //AB$$

Se puede observar que $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ $\xrightarrow{}$ 4

Si no hubiéramos calculado los polos, obtendríamos la velocidad de C planteando el campo de velocidades del elemento 3. ?
$$M$$
 $ω_3AC$

?
$$M \omega_3 AC$$

 $V_C = V_A + V_{CA}$
? $D \perp AC$

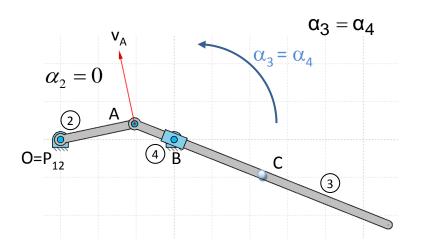


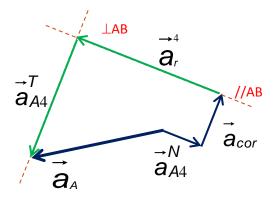
4. Análisis de aceleraciones

Abordamos el problema de aceleraciones con el mismo sistema de referencia que en velocidades. $SR\ en\ B_4(\vec{\omega}_3,\vec{\alpha}_3)$

Planteamos la aceleración de A con ese sistema de referencia

$$\begin{array}{l}
? \\
\boldsymbol{a}_{A} = \boldsymbol{a}_{A}^{N} + \boldsymbol{a}_{A}^{T} & \xrightarrow{\alpha_{2}=0} & ? \\
? & \text{//OA} & \text{LOA} & ? & \text{//OA}
\end{array}$$



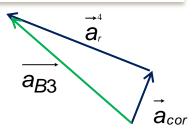


$$\alpha_3 = \alpha_4 = \frac{\mathbf{a}_{A4}^T}{AB} \bullet$$

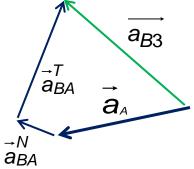
4. Análisis de aceleraciones

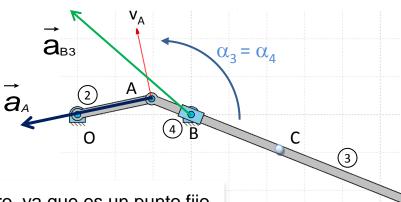
Podemos plantear la aceleración de B₃ con el sistema de referencia puesto en B₄

También podríamos obtener la aceleración de B_3 por campo de aceleraciones, ahora que ya conocemos α_4



?
$$a_{B3} = a_A + a_{BA}^{O_3} \overline{AB} \quad \alpha_3 \overline{AB}$$
 ? $a_A + a_{BA} + a_{BA}$? $a_A + a_{BA} + a_{BA}$





La aceleración de B₄ es cero, ya que es un punto fijo

