
AUTOEBALUAZIOA

1. Bero transferentzia

1. Ariketa: Bero transferentzia bi plaka isotermikoen artean

Eman ezazu bi plaka paraleloren arteko egoera egonkorreko bero transferentzia ematen dela tenperatura konstantepean non T1=300 K eta T2=200 K aurkitzen dira eta L=1 cm-ko distantziaz bananduta daudela Suposatu azalerak beltzak direla (\mathcal{E} =1) kalkulatu plaken arteko bero transferentzia du area-unitateko bien arteko azalera honako hau baldin bada:

- a) Aire atmosferikoa
- b) Hutsa
- c) Uretano isolamendua
- d) Gainisolamanedu termikoa

2. Ariketa: Sabai batean zeharreko bero galerako kostua

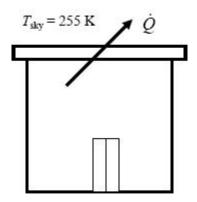
Elektrikoki berotutako etxe bateko sabaiak 8 m zabalera, 6 m luzera eta 0,25 m lodiera ditu eta 0,8 W/m°C eroankortasun termikoko hormigoiko plaka lauez eginda dago. Barruko tenperaturak 15°C-etako eta kanpokoa 4 °C-takoa dira hurrenez hurren, 10 orduko aldi batean zehar. Kalkula ezazu.

- a) Gau horretan zehar sabaian zeharreko bero galeraren abiadura
- b) Bero galeraren kostea etxeko jabearentzat, elektrizitateko kostua 0,08
 €/kWh-eko bada

Ejercicio 3: Beira bateko barruko aurpegiko gainazaleko tenperatura

Iruñean kokatutako etxe baten leihoak beira bikoitzak baina ez baxu emisiboak ditu (U_{beira} = 3,3 W/m²·K). eta marko metalikoa zubi termikoko hausturarekin (U_{markoa} = 4,0 W/m²·K).). Markoak leihoko erabateko azaleraren % 30 suposatzen du.

a) Beiraren gainazaleko tenperatura hurrengo baldintzapean neguko egun baterako kalkula ezazu:


Text = 1 °C; Tint = 21 °C; Rsi = $0,13 \text{ m}^2/\text{K/W}$

Aurrealdeko hormaren balioaren tenperaturarekin konparatu ($U_{horma} = 0,66$ W/m²·K).

b) Leihoa PVC-leiho bategatik ordezkatzen bada kalkuluak errepika itzazu (U_{markoa} = 2,2 W/m²·K) estaltze baxu emisioarekin beira sistemarekin (U_{beira} = 1,6 W/m²·K).

Ejercicio 4: Gau hoztea

Etxe bateko sabaia hormigoi-lauza batez osatuta dago (k=2 W/m·°C) 15 cm-ko lodierarekin zeinek 12 m zabalera eta 10 m luzera dituen. Kanpoaldeko sabaiaren emisibitatea 0,9 da eta konbekziozko bero transferentzia koefizientea 15 W/m²·°C. Sabaiko barruko azalera 15 °C-etan mantentzen da. Neguko gau argi batean, kanpoko airea 10 °C-eta dago, eta erradiazioagatiko bero transferentziarako

zeruaren tenperatura 255 K-tan dago. Erradiazioagatik eta konbekzioagatik bero transferentzia aintzat hartuz kalkula ezazu kanpoko azaleraren tenperatura eta sabaian zeharreko bero transferentzia abiaduraren

5. galdera: Definitu "berotze ahalmena".

6. galdera. "Azkeneko Energia-Kontsumoaz" hitz egiterakoan zeri buruz dihardugu?

7.galdera Eraikin bateko inguratzailea. Definizioa.

ARIKETAN SOLUZIOA

1. Bero transferentzia

1. Ariketa:

a)	Q=588 W
b)	Q=369 W
c)	Q=260 W
d)	Q=0,20 W

2. Ariketa:

a)	Q=1,69 kW
b)	Kostua= 1,35€

3. Ariketa:

a)	U _{vent}	3,51 W/m ² K
	T _{sup}	11,9°C

b)

T _{sup}	12,4°C
T _{sup-muro}	19,3°C
T _{sup-ventana}	16,4°C
T _{sup-vidrio}	16,8°C

4. Ariketa:

|--|

5 galdera.

Berotze-ahalmena: Energia-kantitatea da hau erretzen denean hark erregai bateko masa unitatea askatzen da.

6. galdera.

Azkeneko energia-kontsumoa: industriari hornitutako energia guztia, garraioa, etxeak, zerbitzuak eta nekazaritza. Ez dira kontutan hartzen energiako transformazio sektorera ezta industrietara hornikuntza energetikoak.

7. galdera.

Eraikin bateko inguratzailea: kanpo eta barnea banantzen duten elementuak.

