AIR POLLUTION PROBLEMS (I)

SOLUTIONS

Problem 1.-

A part per trillion by volume $\left(\mathrm{ppt}_{\mathrm{v}}\right)$ is:

$$
\operatorname{ppt}_{\mathrm{v}}=\frac{1 \text { volume pollutant }}{10^{12} \text { volume of air }}=\frac{1 \mathrm{~L} \text { pollutant }}{10^{12} \mathrm{~L} \text { of air }}=\frac{1 \mathrm{~nL} \text { pollutant }}{\mathrm{m}^{3} \text { of air }}
$$

Assuming that Ideal Gas Law ($\mathrm{P} \mathrm{V}=\mathrm{n} \mathrm{R} \mathrm{T}$) is accurate under these conditions (298 K and 1 atmosphere), one mole of a gas would occupy:

$$
V_{m}=\frac{R T}{P}
$$

Where: $\mathrm{P}=$ pressure
V= volume
$\mathrm{n}=$ mole
$R=$ gas constant
$\mathrm{T}=$ temperature

$$
\mathrm{V}_{\mathrm{m}}=\frac{0.082 \frac{\mathrm{~atm} \mathrm{~L}}{\mathrm{~mol} \mathrm{~K}} \cdot 298 \mathrm{~K}}{1 \mathrm{~atm}}=24.44 \mathrm{~L}
$$

The molecular weight of dimethyl sulfide (DMS) is $62 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$. Thus, atmospheric concentrations of DMS between 250 and $500 \mathrm{ng} \cdot \mathrm{m}^{-3}$ equal to:

$$
\begin{aligned}
& 250 \frac{\mathrm{ng} \mathrm{DMS}}{\mathrm{~m}^{3}} \cdot \frac{1 \mathrm{~g}}{10^{9} \mathrm{ng}} \cdot \frac{1 \mathrm{~mol} \mathrm{DMS}}{62 \mathrm{~g}} \cdot \frac{24.44 \mathrm{~L}}{1 \mathrm{~mol}} \cdot \frac{10^{9} \mathrm{~nL}}{1 \mathrm{~L}}=\frac{98.5 \mathrm{~nL} \mathrm{DMS}}{\mathrm{~m}^{3}}=\mathbf{9 8 . 5} \mathbf{~ p p t} \\
& 500 \frac{\mathrm{ng} \mathrm{DMS}}{\mathrm{~m}^{3}} \cdot \frac{1 \mathrm{~g}}{10^{9} \mathrm{ng}} \cdot \frac{1 \mathrm{~mol} \mathrm{DMS}}{62 \mathrm{~g}} \cdot \frac{24.44 \mathrm{~L}}{1 \mathrm{~mol}} \cdot \frac{10^{9} \mathrm{~nL}}{1 \mathrm{~L}}=\frac{98.5 \mathrm{~nL} \mathrm{DMS}}{\mathrm{~m}^{3}}=\mathbf{1 9 7 . 5} \mathbf{~ p p t}
\end{aligned}
$$

Problem 2.-

Considering that there are 2.5 million vehicles on the move and that these vehicles travel a distance of $12,000 \mathrm{~km}$ per year and the NO_{x} emission factor of the fleet of this city is 2.1 grams of NO_{x} per kilometer, the total annual and daily NO_{x} emissions are:

OCW 2016

$$
\begin{aligned}
& 2.5 \cdot 10^{6} \text { vehicles } \cdot \frac{12 \mathrm{~km} \text { vehicle }}{\text { year }} \cdot \frac{2.1 \mathrm{~g} \mathrm{NOx}}{\mathrm{~km}}=\frac{\mathbf{6 . 3} \cdot \mathbf{1 0}^{\mathbf{1 0}} \mathbf{g ~ N O x}}{\text { year }} \\
& \frac{6.3 \cdot 10^{10} \mathrm{~g} \text { NOx }}{\text { year }} \cdot \frac{\text { year }}{365 \text { days }}=\frac{\mathbf{1 . 7 3 \cdot 1 0 ^ { \mathbf { 8 } } \mathrm { g } \mathrm { NOx }}}{\text { day }}
\end{aligned}
$$

The city road network totals $1,600 \mathrm{~km}$. If we assume that the traffic is homogeneously distributed over the city, the daily NO_{x} emissions per square meter are:

$$
\frac{1.73 \cdot 10^{8} \frac{\text { g NOx }}{\text { day }}}{400 \mathrm{~km}^{2} \cdot \frac{10^{6} \mathrm{~m}^{2}}{1 \mathrm{~km}^{2}}}=\frac{\mathbf{0 . 4 3 2 \mathbf { g ~ N O x }}}{\text { day } \cdot \mathbf{m}^{2}}
$$

Problem 3.-

There are 92 people in a public establishment, of these, half are smokers and, on average they smoke 2 cigarettes per hour and that each cigarette, when smoked, releases 1.4 milligrams of formaldehyde, we get:

46 smokers $\cdot \frac{2 \text { cigarretes }}{\mathrm{h}} \cdot \frac{1.4 \mathrm{mg} \mathrm{HCHO}}{\text { cigarrete }} \cdot \frac{1 \mathrm{mg}}{10^{3} \mathrm{mg}} \cdot \frac{90 \mathrm{~g}}{100 \mathrm{~g}} \cdot \frac{1 \mathrm{~mol}}{30 \mathrm{~g} \mathrm{HCHO}}=\frac{\mathbf{0 . 0 3 9} \mathbf{~ m o l ~ H C H O}}{\mathbf{h}}$

The ambient temperature and the pressure in the establishment are $25^{\circ} \mathrm{C}$ and 100.66 kPa , respectively. Assuming that Ideal Gas Law ($\mathrm{P} V=\mathrm{n} R \mathrm{~T}$) is accurate under these conditions, 0.0039 mol of formaldehyde at 298.15 K at 100.66 kPa would occupy:

$$
\mathrm{V}=\frac{0.0039 \mathrm{~mol} \mathrm{HCHO} \cdot \frac{0.082 \mathrm{~atm} \mathrm{~L}}{\mathrm{~mol} \mathrm{~K}} \cdot 298.15 \mathrm{~K}}{100.66 \mathrm{kPa} \cdot \frac{1 \mathrm{~atm}}{101.3 \mathrm{kPa}}}=0.09452 \mathrm{~L} \mathrm{HCHO}
$$

The volume of the $16 \times 12 \times 2.5$ meters establishment is $480 \mathrm{~m}^{3}$.
A part per million by volume $\left(\mathrm{ppm}_{\mathrm{v}}\right)$ is:

$$
\mathrm{ppm}_{\mathrm{v}}=\frac{1 \text { volume pollutant }}{10^{6} \text { volume of air }}=\frac{1 \mathrm{~L} \text { pollutant }}{10^{6} \mathrm{~L} \text { of air }}=\frac{1 \mathrm{~mL} \text { pollutant }}{\mathrm{m}^{3} \text { of air }}
$$

Therefore, the concentration of formaldehyde in units of parts per million is:

$$
\frac{0.094 \mathrm{~L} \mathrm{HCHO}}{480 \mathrm{~m}^{3}} \cdot \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=0.197 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO}
$$

When this toxic compound is present in the air at levels at or above $0.05 \mathrm{ppm}_{\mathrm{v}}$, it can lead to acute physical symptoms such as watery eyes, burning sensations in the eyes and other irritating effects. Assuming that 10% (volume) of the formaldehyde escapes through opened windows and doors and that 60% (volume) of the formaldehyde retained inside the building is

OCW 2016
oxidized to carbon dioxide, the real concentration of formaldehyde is $0.0787 \mathrm{ppm}_{\mathrm{v}}$, which is above $0.05 \mathrm{ppm}_{\mathrm{v}}$.
$0.197 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO} \cdot \frac{40 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO} \text { not oxidated }}{100 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO}}=0.0787 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO}$
And, the concentration of CO resulting from the oxidation of the formaldehyde in the air is:

$$
0.197 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO} \cdot \frac{40 \mathrm{ppm}_{\mathrm{v}} \text { oxidated to } \mathrm{CO}_{2}}{100 \mathrm{ppm}_{\mathrm{v}} \mathrm{HCHO}}=\mathbf{0 . 1 1 8 2} \mathbf{p p m}_{\mathrm{v}} \mathbf{C O}_{2}
$$

Problem 4.-

According to the box model, if we assume steady state emissions and atmospheric conditions and upwind background concentrations of the pollutant are insignificant, the concentration of is given by:

$$
\mathrm{C}_{\text {pollutant }}=\frac{\Delta \mathrm{x} \cdot \mathrm{Q}}{\mathrm{z} \cdot \mathrm{u}}
$$

Where: $\quad \Delta \mathrm{x}=$ distance over which the emissions take place

$$
\mathrm{Q}=\text { area emission rate }
$$

$$
\mathrm{z}=\text { mixing height }
$$ $u=$ average wind speed through the vertical extent of the box

If the city emits $0.012 \mathrm{mg} \cdot \mathrm{m}^{-2} \mathrm{~s}^{-1}$ of sulfur dioxide, it extends 15 km in the wind direction and 10 km perpendicularly the wind speed is $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and the pollutants are mixed up to 600 m altitude, the concentration of SO_{2} is:

$$
\left[\mathrm{SO}_{2}\right]=\frac{15 \mathrm{~km} \cdot \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{0.012 \mathrm{mg} \mathrm{SO}}{2}}{\mathrm{~m}^{2} \mathrm{~s}} \cdot \frac{10^{3} \mu \mathrm{~g}}{1 \mathrm{mg}}\left(\mathbf{1 0 0 \boldsymbol { \mu g ~ S O }}{ }_{2}\right.
$$

Problem 5.-

A power plant with no sulfur removal equipment burns 30 tons of coal per hour to generate electricity. The analyses of the samples of the exhaust gases show that sulfur dioxide concentration is $2,000 \mathrm{ppm}_{\mathrm{v}}$ and that they are emitted at a temperature of $460^{\circ} \mathrm{C}$ and an overpressure of 0.05 atmospheres.

Applying the Ideal Gas Law ($\mathrm{PV}=\mathrm{nRT}$), we get that a mol of a gas at the conditions of this problem (1.05 atmosphere and $460^{\circ} \mathrm{C}$) would occupy:

$$
\mathrm{V}_{\mathrm{m}}=\frac{\frac{0.082 \mathrm{~atm} \mathrm{~L}}{\mathrm{~mol} \mathrm{~K}} \cdot(460+273.15) \mathrm{K}}{1.05 \mathrm{~atm}}=57.26 \mathrm{~L}
$$

Thus, the SO_{2} emitted per cubic meter is:

$$
2000 \mathrm{ppm}_{\mathrm{v}} \mathrm{SO}_{2} \cdot \frac{64 \mathrm{~g} \cdot \mathrm{~mol}^{-1}}{57.26 \mathrm{~L}}=\frac{2235.6 \mathrm{mg} \mathrm{SO}_{2}}{\mathrm{~m}^{3}} \cdot \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}}=\frac{2.2356 \mathrm{~g} \mathrm{SO}_{2}}{\mathrm{~m}^{3}}
$$

As the exhaust gas flow is $25,000 \mathrm{~m}^{3} \cdot \mathrm{~min}^{-1}$, the mass of SO_{2} released per second is:

$$
\frac{2.2356 \mathrm{~g} \mathrm{SO}_{2}}{\mathrm{~m}^{3}} \cdot \frac{25000 \mathrm{~m}^{3}}{\min } \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=\frac{\mathbf{9 3 1 . 5} \mathbf{g ~ S \mathbf { S O } _ { 2 }}}{\mathbf{s}}
$$

To calculate the percentage of sulfur in coal, first, we calculate the kilograms of SO_{2} emitted per hour. It is set by:

$$
\frac{2.2356 \mathrm{~g} \mathrm{SO}_{2}}{\mathrm{~m}^{3}} \cdot \frac{3600 \mathrm{~s}}{1 \mathrm{~h}} \cdot \frac{1 \mathrm{~kg}}{10^{3} \mathrm{~g}}=\frac{3353.38 \mathrm{~kg} \mathrm{SO}_{2}}{\mathrm{~h}}
$$

Assuming that the reaction between one mole of S and molecular oxygen produces one mole of SO_{2} and considering that the molecular weight of $\mathrm{SO}_{2}\left(64 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$ doubles the one of the sulfur $\left(32 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$, the mass of S 'burned' per hour is:

$$
\frac{3353.38 \mathrm{~kg} \mathrm{SO}_{2}}{\mathrm{~h}} \cdot \frac{1 \mathrm{~kg} \mathrm{~S}}{2 \mathrm{~kg} \mathrm{SO}_{2}}=\frac{1676.69 \mathrm{~kg} \mathrm{~S}}{\mathrm{~h}}
$$

Thus, the percentage of sulfur in coal by mass is:

$$
\frac{1676.69 \mathrm{~kg} \mathrm{~S}}{\mathrm{~h}} \cdot \frac{1 \mathrm{~h}}{30000 \mathrm{~kg} \mathrm{coal}} \cdot 100=\mathbf{5 . 5 9} \% \mathbf{S}
$$

