Appendix UNIT CONVERSION

2016

Estibaliz Sáez de Cámara Oleaga

OCW UPV/EHU 2016 AIR POLLUTION APPENDIX

UNIT CONVERSION

It is common practice to express the concentration of gaseous pollutants present in the air as parts per million, parts per billion and parts per trillion in **volumetric basis**. The concentration of pollutants as a **mass basis** is commonly expressed as milligrams, micrograms or nanograms per cubic meter of air.

$$ppm = rac{1 \ vol \ gaseous \ compound}{10^6 \ vol \ air}$$
 $rac{mg}{m^3}$
 $ppb = rac{1 \ vol \ gaseous \ compound}{10^9 \ vol \ air}$ $rac{\mu g}{m^3}$
 $ppt = rac{1 \ vol \ gaseous \ compound}{10^{12} \ vol \ air}$ $rac{ng}{m^3}$

Assuming that the pollutant gas behaves as an ideal gas, at given pressure and temperature, the relationship between ppm and milligrams per cubic meter is found from:

$$PV = nRT$$

Where: P= pressure (atm)

T= temperature (K)

V= volume (L)

n= moles

MW= molecular weight (g·mol⁻¹)

 $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

3

OCW UPV/EHU 2016 AIR POLLUTION APPENDIX

If P is taken as 101.3 kPa (1 atm) and T as 25 $^{\circ}$ C (298.15 K), reducing the equation, V is 24.5 L; then, the basic relation between the concentration (C) in mg·m⁻³ and a ppm is:

$$C\left(\frac{mg}{m^3}\right) = \frac{ppm \cdot MW_{poll}}{24.5}$$

The concentration in other conditions can be determined by multiplying the constant by the appropriate ratio of temperatures and pressures according to the Ideal Gas Law.