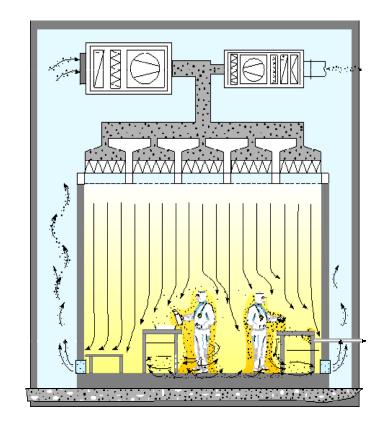
Tecnología de inyectables

TEMA 14

Calvo B, Esquisabel A, Hernández R, Igartua M
Tecnología Farmacéutica: Formas Farmacéuticas. OCW-2015


- 1. Requerimientos del área de elaboración
- 2. Elaboración de inyectables de pequeño volumen
- 3. Preparaciones parenterales de gran volumen
- 4. Controles de inyectables
- 5. Acondicionamiento
- 6. Otros sistemas de administración parenteral

Requerimientos del área de elaboración

- Purificación del aire: salas blancas o limpias
 - Control del nº de partículas, gérmenes, humedad y Tº
 - Filtros HEPA (high efficiency particulate air system): eliminan partículas ≥ 0,3 μm con una eficacia > 99,99 %
 - Presión positiva (5-10 mm de agua)
- Entrada de materiales y personal a través de SAS
- Características del diseño y construcción de las salas limpias
 - Baldosas vinílicas
 - Paredes y techo lisos
 - Pintura epoxi
 - Ángulos redondeados
 - Mobiliario de acero inoxidable

Clasificación de las salas limpias

- Zona clase 100 (clase A)
- Zona clase 1.000 (clase B)
- Zona clase 10.000 (clase C)
- Zona clase 100.000 (clase D)

Simon, R. Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://de.wikipedia.org/wiki/Datei:Laminar Flow Reinraum.png consultada el 15-05-15)

Gomez, J.E. Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://commons.wikimedia.org/wiki/File:Mixing the medications at the laminar flow cabinet.jpg (consultada el 15-05-15)

Vertical: citostáticos, material radiactivo,, antimicrobianos

Nivel de limpieza	Nº máximo de particulas permitidas por m³ (≥ del tamaño indicado)			
	En reposo		En funcionamiento	
	0,5 µm	5 µm	0,5 µm	5 µm
A cabina de flujo laminar	3.500	no	3.500	no
В	3.500	no	350.000	2.000
С	350.000	2.000	3.500.000	20.000
D	3.500.000	20.000	No definido	No definido

En reposo ⇒ equipos en funcionamiento, pero el personal no esta en la sala En funcionamiento ⇒ (condiciones normales), equipos en funcionamiento y personal en la sala

	Valores medios recomendados de contaminación microbian			n microbiana
Nivel de limpieza	Muestra de aire UFC/m ³	Placas de precipitación (Ø 90 mm) UFC/4h	Placas de contacto (Ø 55 mm) UFC/placa	Impresión de los 5 dedos del guante UFC/guante
A cabina de flujo laminar	<1	<1	<1	<1
В	10	5	5	5
С	100	50	25	-
D	200	100	50	-

En reposo ⇒ equipos en funcionamiento, pero el personal no esta en la sala En funcionamiento ⇒ (condiciones normales), equipos en funcionamiento y personal en la sala

Zonas de elaboración de inyectables

		Preparación	Llenado y cierre
Preparaciónes con esterilización terminal		*Entorno C	
		Entorno D	Zona A, entorno C
Preparaciónes sin	Filtración esterilizante	Entorno B	Zona A, entorno B
esterilización terminal	Sin filtración esterilizante	Zona A, entorno B	

(*) si el riesgo de contaminación es mayor del habitual

Elaboración de inyectables de pequeño volumen

Ampollas y viales de vidrio:

- Lavado con agua normal o desionizada a presión
- Lavado con agua destilada o purificada a presión
- Mediante surtidor o colocar boca abajo en solución limpiadora y calentar a ebullición
- Secado con aire caliente o en estufa
- Esterilización: calor seco

Igartua, M. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 8-05-2015)

Con permiso de Robert Bosch GmbH. http://www.boschpackaging.com

Equipo de lavado de viales de vidrio:

Con permiso de Robert Bosch GmbH. http://www.boschpackaging.com

Tapones de caucho:

- Lavado con solución caliente de pirofosfato sódico 0,5 %
- Enjuagar con agua corriente y al final con agua destilada
- Esterilización: calor húmedo
- Secar (vacio, 100 °C)

Igartua, M. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 08-05-2015)

Preparación de disoluciones inyectables

- 1. Pesar los componentes
- 2. Disolver el P.A. y excipientes en el vehículo adecuado
- Filtración:
- 4. Filtros en profundidad y membranas filtrante (0,22 μ m)
- 5. Llenado de envases
- 6. Cierre
- 7. Esterilización
- 8. Controles

Igartua, M. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 08-05-2015)

Preparación de suspensiones inyectables

- 1. Pesar los componentes
- 2. * Tamaño de partícula del P.A. 0,1-10 mm
- 3. Suspender P.A. y excipientes en un vehículo en el que el P.A. no es soluble
- 4. Esterilizar antes de mezclar
- 5. Llenado
- 6. Cierre
- 7. Controles

Preparación de emulsiones inyectables

- 1. Pesar los componentes
- Disolver el P.A. en un vehículo adecuado y emulsificar con el resto de excipientes
- 3. * Tamaño de gotícula < 1μm para prevenir embolias
- 4. Esterilizar problemática (antes de mezclar)
- 5. Llenado
- 6. Cierre
- 7. Controles

Preparación de polvos inyectables

1. Cristalización estéril:

Disolución del P.A (filtración esterilizante) + no solvente: cristalización

Filtración de los cristales, secado y pulverización

- 2. Secado por atomización
- 3. Liofilización:

Disolución del P.A. en su envase final

Llenado y cierre del envase

- Dosificación individual de ampollas y viales
- Equipos automáticos (jeringas dosificadoras de gran precisión)
- Preparaciones oxidables: atmosfera de N₂ o CO₂
- Llenado con un exceso de volumen para asegurar que se recuperará el volumen especificado:

Volumen teórico (mL)	Líquidos fluidos (mL)	Líquidos viscosos (mL)
0,5	0,10	0,12
1	0,10	0,15
2	0,15	0,25
5	0,30	0,50
10	0,50	0,70
20	0,60	0,90
30	0,80	1,20
50 o más	2%	3%

Llenado y cierre del envase

- Ampollas: fusión del vidrio con soplete
- Frascos y viales: tapón + cápsula de aluminio

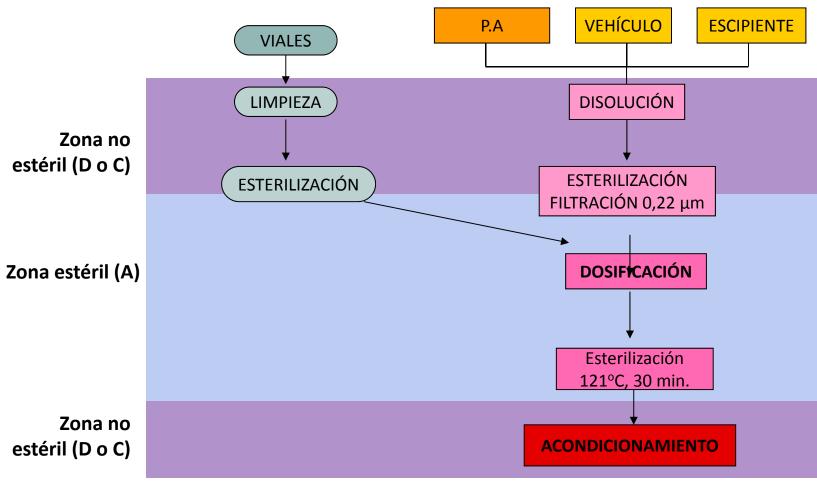
Con permiso de Robert Bosch GmbH. http://www.boschpackaging.com

Llenado y cierre del envase

Zurek, S. Publicada en wikipedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0. http://en.wikipedia.org/wiki/File:Cleanroom entrance.jpg (consultada el 15-05-15)

Video BAXTER: llenado y cierre de viales (consultado 15-05-2015)

http://www.baxterbiopharmasolutions.com/educational-resources/videos.html


Esterilización terminal

- Esterilización por calor húmedo (autoclave 121 ºC, 15 min)
- Calor seco (mín 160 ºC, 2h)
- Radiación ionizante (radiación g)
- Filtración esterilizante (0,22 mm)

Preparación aséptica

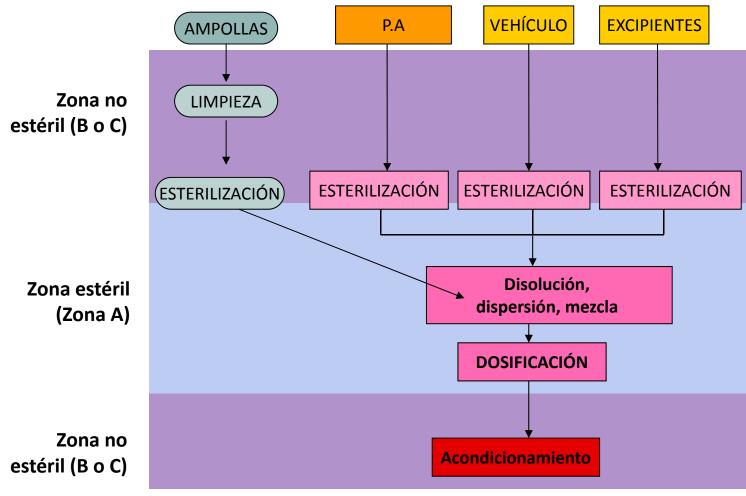

- Productos que no pueden esterilizarse en su envase definitivo
- Diseño de locales de producción y ventilación
- Equipos, recipientes, tapones y componentes esterilizados
- Cabina de flujo laminar

Diagrama de flujo de la preparación una disolución inyectable

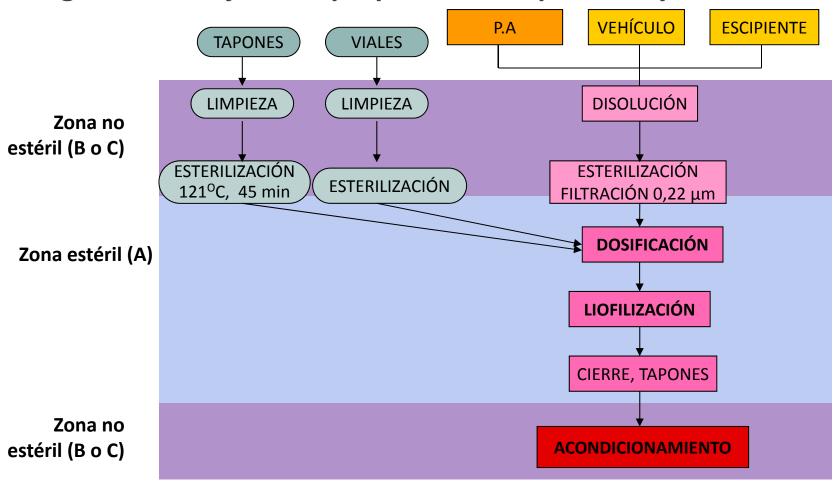

Esquisabel, A. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 8-05-2015)

Diagrama de flujo de la preparación de una emulsión inyectable

Esquisabel, A. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 8-05-2015)

Diagrama de flujo de la preparación de polvos inyectables

Esquisabel, A. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 8-05-2015)

Acondicionamiento final

- Lavar los envases con detergente, aclarar y secar
- Colocar etiquetas
- Acondicionamiento en cajas de cartón
 - ** Polvos parenterales: acondicionar junto con el disolvente para reconstitución o indicar el disolvente a utilizar.

Igartua, M. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 08-05-2015)

Controles de inyectables de pequeño volumen

- Hermeticidad del envase
- Volumen extraíble
- Limpidez
- Esterilidad
- Ensayo de pirógenos
- Contenido del principio activo
- Isotonicidad, pH, viscosidad

Hermeticidad del envase

Ampollas

- Introducir boca abajo en el autoclave
- Sumergir en una solución de colorante (azul de metileno 1%)
- Si no pueden calentarse: sumergir en azul de metilo 1% y aplicar vacio

Volumen extraíble (E.F. 2.9.17)

- El volumen de la preparación debe ser adecuado para permitir extraer el volumen indicado (dosis nominal)
- Llenado: volumen nominal+ cantidad en exceso
- Extraer el contenido individualmente con una jeringa y sin quitar la aguja medir el volumen (o pesar y con la densidad (D) →volumen= P/D)

PREPARACIONES UNIDOSIS:

- Volumen nominal >10 mL: 1 envase
- Volumen nominal 3 mL 10 ml: 3 envases
- Volumen nominal <3 mL : 5 envases</p>

Cumple:

Si el volumen medido no es < que el volumen teórico

Volumen extraíble (E.F. 2.9.17)

PREPARACIONES CON DOSIS MÚLTIPLES:

- 1 ENVASE
- Extraer una a una las dosis indicadas utilizando diferentes jeringas y medir el volumen (n= nº de dosis)

Cumple:

Si el volumen medido con cada jeringa no es < que el volumen nominal

Limpidez

Inspección óptica automática de viales

Con permiso de Robert Bosch GmbH. http://www.boschpackaging.com

Esterilidad

- Control del proceso de esterilización
- Indicadores biológicos (m.o. resistentes)
 - Tiras de papel inoculadas
 - Ampollas con el m.o. y el medio de cultivo

Método de esterilización	Especie bacteriana (esporas)	
Calor húmedo	B. stearothermophilus	
Calor seco	B. subtilis var. Níger	
Óxido de etileno	B. stearothermophilus, B. subtilis var. Níger	
Radiaciones	B. pumilus, B. cereus, B. sphaericus	

Esterilidad

- Control del proceso de esterilización
- Indicadores químicos de la esterilización

Sustancia	Punto de fusión (°C)
Benzonaftol	110
Antipirina	114
Ácido benzoico	121
Fenacetina	135

Esterilidad

- Control de la esterilidad (E.F. 2.6.1)
- Realización del muestreo (nº de unidades por lote)
- Cantidad de muestra
- Medios de cultivo para los m.o.
- Procedimiento: filtración o siembra directa

Controles de polvos inyectables

- Uniformidad de peso (F.E. 2.9.5)
- Uniformidad de contenido (F.E. 2.9.6)
- Ensayo de facilidad de resuspensión o disolución
- Humedad residual (en polvos liofilizados)
- Ausencia de pirógenos
- Esterilidad

Uniformidad de peso (F.E. 2.9.5)

- Pesar de forma individual 20 envases: W1
- Vaciar el envase completamente, secar y pesar: W2
- Calcular el peso del contenido : W1 W2
- Calcular el peso medio

Resultados:

- No más de 2 envases se desvía más del ±10% y ninguno más del ±20 %
- Este ensayo no es necesario si el peso medio es ≤40 mg

Uniformidad de contenido (F.E. 2.9.6)

- *También para suspensiones
- Utilizando un método analítico adecuado, calcular el contenido individual de principio activo de 10 envases tomados al azar.
- Ensayar simultáneamente una solución estándar del P.A.

Resultados:

- Cumple: si cada uno de los contenidos está entre 85 115 %
- No cumple: si más de uno de los contenidos está fuera del 85 −115 %
- O si uno de ellos está fuera del 75 125 % (continuar...)

Uniformidad de contenido (F.E. 2.9.6)

Resultados:

• Si uno de los contenidos individuales está fuera de los límites 85-115%, pero dentro de 75-125%

Determinar el contenido individual de otras 20 unidades

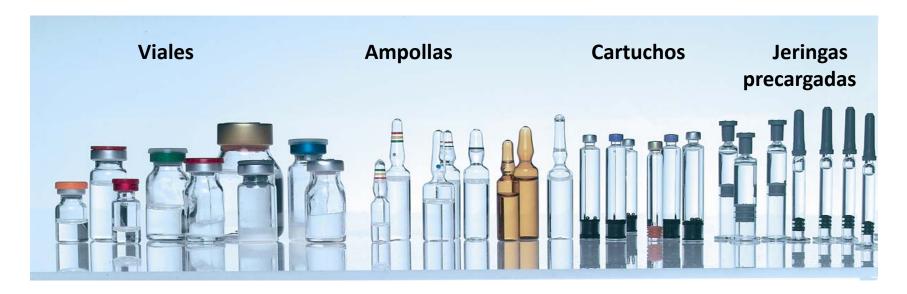
Cumple: Si no más de uno de los contenidos individuales de las 30 unidades está fuera del 85-115~% y ninguno excede el 75-125~%

Recipientes o envases

Envases de vidrio

- Ampollas: extracción del contenido en una vez
- Frascos o viales: extracción en una o varias veces

Tipos de vidrio para inyectables


- Vidrio tipo I o borosilicato: vidrio neutro, alta resistencia hidrolítica
- Vidrio tipo II (sódico-cálcico tratado): resistencia hidrolítica buena
- Vidrio tipo III (sódico-cálcico): resistencia hidrolítica media
 - → Soluciones no acuosas y polvos

Plásticos

- Bolsas y ampollas
- Policloruro de vinilo: sangre, hemoderivados, soluciones de administración parenteral
- Poliolefinas: Polietileno y Polipropileno (administración parenteral en general)

Itayba.Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0. http://en.wikipedia.org/wiki/File:Iv1-07-014.jpg (consultada el 15-05-15)

Con permiso de Robert Bosch GmbH. http://www.boschpackaging.com

Jeringas precargadas

Igartua, M. Laboratorio de Tecnología Farmacéutica, UPV/EHU. (realizada el 08-05-2015)

Plumas de inyección (ej. para insulina)

PerPex. Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://en.wikipedia.org/wiki/File:Insulin_pen.JPG_(consultada el 15-05-15)

Preparaciones parenterales de gran volumen

Soluciones estériles de volumen \geq 100 ml, inyectadas a través de la piel o mucosas \Rightarrow vasos sanguíneos, órganos, tejidos y heridas

- Son dosis únicas
- Recipientes de vidrio o plástico
- No llevan conservantes

Tipos de preparaciones:

- Soluciones de gran volumen para uso i.v.
- Soluciones para irrigación
- Soluciones para diálisis
- Soluciones cardiopléjicas

Soluciones de gran volumen para uso i.v. (fluidos intravenosos)

Aplicaciones terapéuticas:

- Cubrir necesidades hidroelectrolíticas y de glucosa
- Desequilibrios electrolíticos (deshidratación, gastroenteritis, vómitos,..)
- Desequilibrios ácido-base
- Expansores o sustitutos del plasma
- Aporte de elementos nutricionales (si no es posible vía oral)
- Vehículos para administración de otros fármacos i.v. (100 1000 mL): citostáticos, teofilina, ranitidina, metronidazol
- Deben ser isotónicas (si no se administran en venas de gran calibre)

Soluciones de gran volumen para uso i.v.

1.- Soluciones de mantenimiento y rehidratación

- Soluciones de carbohidratos: glucosa, levulosa
- Soluciones de electrolitos: NaCl 0,9 %, Ringer lactato
- Soluciones de glucosa-electrolitos: glucosa y NaCl y otros iones (Na, K, Mg, Cl, lactato, fosfato)

2.- Correctoras de desequilibrios electrolíticos y ácido-base

- Soluciones de bicarbonato Na (tto. acidosis metabólica)
- Soluciones de lactato Na (tto. acidosis metabólica)
- Soluciones de cloruro amónico (tto. alcalosis metabólica)

Soluciones de gran volumen para uso i.v.

3.- Soluciones coloidales (↑ ↑ volumen plasmático)

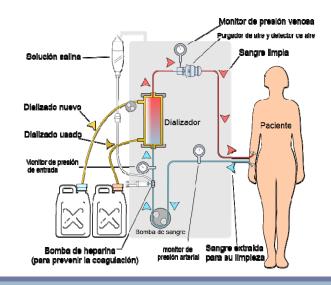
- Soluciones de dextrano
- Soluciones de hidroxietilamidón
- Soluciones de gelatina

4.-Otras

- Soluciones de manitol
- Tratamiento de edema cerebral, ↑↑ diuresis

Soluciones para irrigación

1. Soluciones para irrigación quirúrgica


■ NaCL 0,9%, Agua estéril p.p.i. para irrigación

2. Soluciones para irrigación urológica (1, 2 y 3 L)

- Solución de glicina para irrigación
- Solución del NaCl 0,9 % para irrigación

Soluciones para diálisis

- Insuficiencia renal terminal
- Eliminación de solutos de la sangre a través de una membrana semipermeable a la solución de diálisis
- Diálisis peritoneal: se infunde una solución de glucosa/electrolitos a través de un catéter en la cavidad peritoneal (peritoneo:membrana)
- Las soluciones deben tener un mínimo de 1,54 % de glucosa

Esquema de la hemodiálisis

Inkscape. Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0. http://commons.wikimedia.org/wiki/File:Hemodialysis-en.svg (consultada el 15-05-15)

Soluciones cardiopléjicas

- Uso en cirugía a corazón abierto
 - Miocardio flácido e inmóvil
 - Campo operatorio con menos sangre
- Generalmente son soluciones hiperosmóticas para minimizar el edema del miocardio

Ejemplo de solución cardiopléjica

	Extracelular (mM)	Intracelular (mM)
Cloruro sódico	83	12
Cloruro potásico	30	10
Cloruro cálcido	0,5	-
Bicarbonato sódico	27	-
Cloruro magnésico	-	2
Glucosa	28	-
Manitol	-	239

Preparación de inyectables de gran volumen

- Preparación de materiales y envases
- Preparación de la mezcla de componentes
- Llenado y cierre
- Esterilización (o preparación aséptica)
- Envasado final

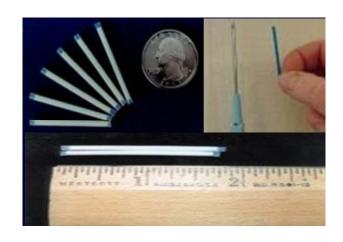
Preparación de inyectables de gran volumen

Preparación de mezclas intravenosas

Bermejo, I.. Publicada en cuidandote.net con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0. http://www.cuidandote.net/2012/01/soy-del-pool-farmacia/

(consultada el 15-05-15)

Preparación de nutriciones parenterales


Bermejo, I.. Publicada en cuidandote.net con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://www.cuidandote.net/2012/01/soy-del-pool-farmacia/ (consultada el 15-05-15)

Otros Sistemas de Administración Parenteral

Implantes Bombas de infusión Otros sistemas de inyección

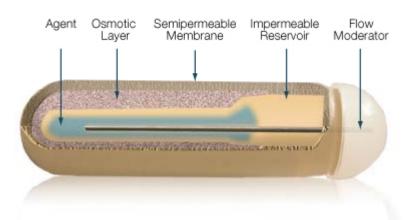
Norplant®

- Pequeños tubos de silicona
- Difusión del P.A: en función de la densidad, espesor y superficie del tubo
- Anticonceptivo (Levonorgestrel)
- Duración del tto de 5 años (5 mg/dia)
- Pequeña cirugía para su implantación y retirada

Publicada en medwave.cl con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://www.medwave.cl/link.cgi/Medwave/PuestaDia/Congresos/ 1272?ver=sindiseno consultada el 15-05-15)

Con permiso de Durect Corporation.


http://www.alzet.com/

Con permiso de Durect Corporation.

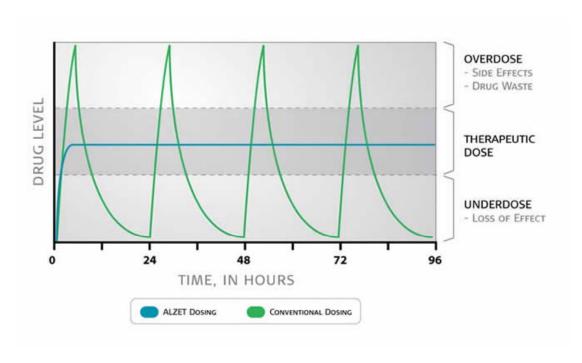
http://www.alzet.com/

Implantes: bomba osmótica Alzet®

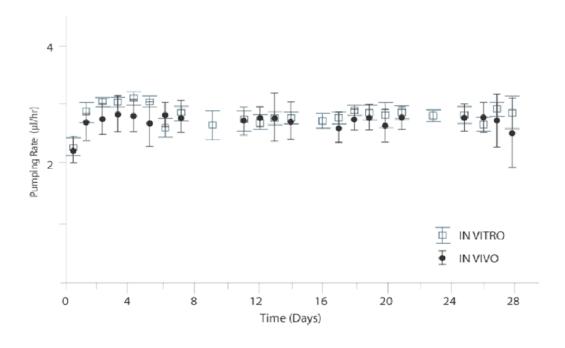
Con permiso de Durect Corporation.

http://www.alzet.com/

3 capas concéntricas:


- Membrana semipermeable que cotrola la velocidad de liberación
- Cápa osmótica
- Reservorio impermeable del fármaco

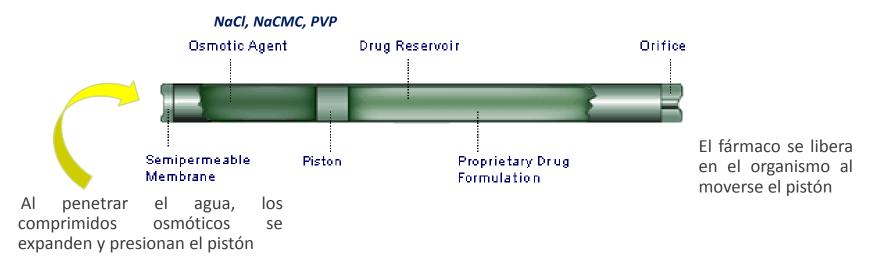
Funciona por presión osmótica:


- El agua entra a través de la membrana semipermeable (debido a la alta conc. de NaCl en la capa osmótica).
- La entrada de agua hace que se expanda la capa osmótica y que se comprima el reservorio flexible de fármaco, liberando la solución de fármaco a través del orificio de liberación.

VENTAJAS

- Permite la administración continua de péptidos y proteínas con corta t_{1/2}
- Permite la dosificación crónica de animales de laboratorio
- Disminuye la variabilidad experimental asegurando la reproducibilidad de los resultados
- Evita la necesidad de dosificar por la noche o el fin de semana
- Disminuye la manipulación y el estrés de los animales de laboratorio
- Tamaño tan pequeño como para ser utilizada en ratones y ratas jóvenes
- Permite la vectorización del fármaco a cualquier tejido
- Dispositivo para investigación con buena relación coste-eficacia

Con permiso de Durect Corporation. http://www.alzet.com/



Velocidad de bombeo *in vitro* e *in vivo* del Modelo 2ML4 ALZET en función del tiempo en ratas Sprague Dawley tras implantación SC (n=105)

Con permiso de Durect Corporation. http://www.alzet.com/

Duros®

- Tubo de titanio de 45 mm x 4mm
- Entrada de agua a través de la membrana semipermeable y disolución del agente osmótico
- Ej: Acetato de leuprolida (tto. del cáncer de próstata)

Con permiso de Durect Corporation. http://www.durect.com

Bombas de infusión

- Avances en electrónica
- Microprocesadores, programas de cálculo
- Administración parenteral: i.v., subcutánea, intraperitoneal, intrarraquídea, ...
- Alta precisión
 Nutrición parenteral, quimioterapia, analgésicos epidurales, insulina s.c

Bombas de insulina

- Tamaño de un "busca" con batería
- Reservorio de insulina
- Cánula
- Recarga cada 2 3 días
- Aporta cantidad constante

 tasa basal (entre comidas y noches)
- En comidas →

Ayuda a evitar las hiper- e hipoglucemias

Mbbradford. Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://en.wikipedia.org/wiki/File:Insulin pump with infusion set. ipg (consultada el 15-05-15)

Bombas de insulina: Sistema Medtronic®

Infusión continua de insulina

+

Monitorización continua de G (electrodo , 3 días)

Calcula la cantidad de insulina a administrar

Alarma o vibración si niveles peligrosos!

David-i98,. Publicada en wikimedia con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0.

http://en.wikipedia.org/wiki/File:Insulin pump and infus ion set.JPG (consultada el 15-05-15)

Bombas Syncromed®

- Bomba implantable bajo la piel, programable, con batería
- Depósito de medicación
- Liberación a velocidad programada
- Fármacos aprobados por la FDA
 - Morfina (analgésico opioide)
 - Ziconotide (analgésico no-opioide)
 - Baclofen (tto de la espeasticidad)

Con permiso de e-algos. http://www.e-algos.com

Bolígrafo de autoinyección con cartuchos

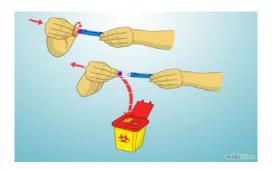
1. Quitar la tapa

2. Poner la aguja y destaparla

3. Cargar el cartucho y dar unos pequeños golpes para eliminar las burbujas

4. Presionar en la parte inferior para cebar

Publicada en wikihow con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0. http://www.wikihow.com/Use-an-Insulin-Pen (consultada el 15-05-15)


Bolígrafo de autoinyección con cartuchos

5. Seleccionar el número de unidades a administrar

6. Inyectar presionando en la parte inferior. Mantener la aguja durante 6 s y sacarla manteniendo presionada

7. Desecha la aguja y guardar el bolígrafo

Publicada en wikihow con licencia Creative Commons Genérica de Atribución/Compartir-Igual 3.0. http://www.wikihow.com/Use-an-Insulin-Pen (consultada el 15-05-15)

Sistemas sin aguja (needle free) Bioject®

- Pistón y reservorio con gas ⇒ empuja al líquido a pasar a través del orificio
- Cartuchos precargados con el fármaco
- Volumen: 0,2 1 mL
- Sistema ligero, portátil ⇒ autoadministración
- Administración SIN DOLOR

Video: Biojector 2000

https://www.youtube.com/watch?v=FGHyNhMCC2I (consultado 15-05-2015)