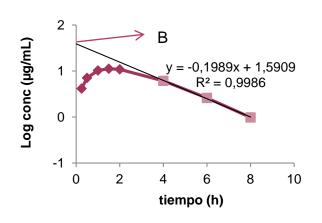
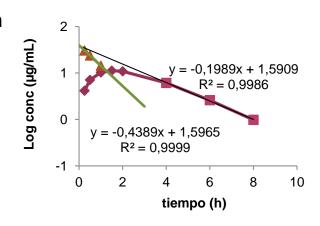

La administración oral de 500 mg de amoxicilina a un paciente de 60 Kg origina la siguiente curva de concentraciones plasmáticas en función del tiempo:

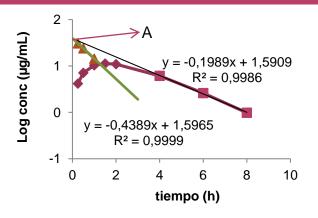

Tiempo (h)	0,25	0,5	1	1,5	2	4	6	8
Conc. (µg/mL)	8,32	14,20	20,60	22,48	21,80	12,24	5,20	1,96

Calcula: K_a, K_e, t_{1/2}, V_d, CI, ABC_{0-INF}, F, C_{max} y T_{max}


Calculamos el logaritmo de la concentración y representamos los datos

Tiempo (h)	0,25	0,5	1	1,5	2	4	6	8
Conc. (µg/mL)	8,32	14,20	20,60	22,48	21,80	12,24	5,20	1,96
Log conc	0,62	0,85	1,01	1,05	1,04	0,79	0,41	-0,01


Con los 3 últimos puntos hacemos la regresión lineal para obtener la recta de eliminación



pendiente	-0,1989	
K _e	0,46	h ⁻¹
t _{1/2}	1,51	h ⁻¹
Ordenada en el origen	1,5909	
В	38,99	

Calculo los residuales para obtener la recta de absorción

	Residuales				
tiempo	valor en la recta de eliminación	conc en la recta de eliminación	residuales	log residuales	
0,25	1,54	34,77	30,61	1,49	
0,5	1,49	31,01	23,91	1,38	
1	1,39	24,66	14,36	1,16	

pendiente	-0,4389	
K_{a}	1,01	h-1
t _{1/2}	0,69	h-1
Ordenada en el origen	1,5965	
Α	39,49	

 $C_{o,ext}$: $F \cdot D \cdot K_a / V \cdot (K_a - K_e)$ F 0,92

Dosis 500

$$V_d$$
 $F \cdot K_a \cdot D/C_{o,ext} \cdot (K_a - K_e)$
 V_d 21,30 L

CI	$V_d \cdot K_e$		
CI	9,76	L/h	

 t_{max} $ln(k_a/K_e)/(K_a-K_e)$ t_{max} 1,43 h

$$C_{max}$$
 $C_{o,ext}(e^{-ke^*t}-e^{-ka^*t})$ C_{max} 11,06 µg/mL

ABC _{0-inf}	A/K _e -B/K _a	
ABC _{0-inf}	46,04	μg h/mL

ABC _{0-inf}	F-D/V-K _e	
ABC _{0-inf}	47,14	μg h/mL