- 1.- Para una molécula de polietileno lineal de peso molecular 100000 g/mol, si la longitud del enlace C-C es de 0,154 nm y el ángulo de enlace es 109,5, calcular:
 - a) Su grado de polimerización.
- b) La distancia extremo a extremo de la molécula en la conformación totalmente extendida.
 - c) La distancia cuadrática media según el modelo de cadena libremente articulada.
- d) La distancia extremo a extremo de la molécula según el modelo de cadena libremente articulada.
- e) La distancia extremo a extremo de la molécula según el modelo de cadena de rotación libre.
- 2.- Dada una molécula de poliestireno lineal de peso molecular 1000000 g/mol, la distancia extremo a extremo de la molécula en condiciones no perturbadas es de 733 Å, si la longitud enlace C-C es de 0,154 nm y el ángulo de enlace es 109,5:
 - a) Calcula la distancia extremo a extremo de la molécula según el modelo de cadena libremente articulada.
 - b) Calcula la distancia extremo a extremo de la molécula según el modelo de cadena de rotación libre.
 - b) Determina el factor de impedimento estérico.
- 3.-El poli(1-hexano) y el poli(metilpentano) ambos tienen un grupo $-C_4H_9$ como la cadena lateral unido a la cadena principal. Los valores de Tg son -50 °C y +30 °C respectivamente. Explica la diferencia.
- 4.- Indicar por qué los siguientes polímeros con estructuras químicas similares poseen temperaturas de transición vítrea muy diferentes:
 - a) Polietileno (-120°C) y polipropileno (-20°C)
 - b) Poli(óxido de etileno) (-41°C) y poli(vinil alcohol) (32°C)
 - c) Poli(acrilato de metilo) (10°C) y poli(metilacrilato de metilo) (105°C)

5.- Se ha medido el volumen específico de poli(metacrilato de metilo) isotáctico en función de la temperatura, obteniéndose los siguientes valores:

Temperatura (ºC)	Volumen específico (cm³/g)
20	0.838
30	0.840
40	0.842
50	0.844
60	0.845
70	0.846
80	0.847
90	0.849
100	0.853
110	0.860
120	0.864
130	0.875
140	0.88

Determina la temperatura de transición vítrea de este polímero.

6.- Se han medido las temperaturas de transición vítrea para muestras del mismo polímero con diferente contenido de plastificante. Estima el porcentaje de plastificante para una muestra de T_g = 260K.

W _A	0	0,10	0,20	0,4	0,5	0,6
Tg (K)	305	297	289	274	266	258

7.- Para una serie de carbohidratos homólogos de diferente peso molecular se han medido sus temperaturas de transición vítrea, obteniéndose los siguientes resultados:

Carbohidrato	Almidón	Maltohexaosa	Maltotriosa	Maltosa
Mn	4061	996	543	340
Tg (ºC)	230	190	140	88

Predice para una muestra de Tg=133K su peso molecular.

- 8- ¿cuál es la principal ventaja de realizar una cristalización:
- a) isoterma?
- b) a una temperatura de cristalización próxima a la temperatura de fusión?
- 9.- Si se considera para la cristalización del polietileno que σ = 60erg cm⁻², Δ g= 1,2 x 10⁸ erg cm³, determina el valor del radio crítico para que comience el crecimiento de la esferulita (r_{crit}).
- 10.- Se realizó el estudio de la cinética de cristalización de una muestra de nylon 6 mediante DSC llevando a cabo la cristalización a una temperatura de 206º C durante 90 minutos. El

porcentaje de material cristalizado con el tiempo fue determinado a partir las áreas parciales y total del pico exotérmico de cristalización del termograma. Determina el índice de Avrami.

Fracción de material cristalizado	Tiempo (s)
0.3	454
0.35	478
0.4	499
0.45	520
0.50	541
0.55	561
0.60	581

11.- Se ha estudiado el proceso de cristalización de una muestra de poli(óxido de etileno) a partir del fundido en un intervalo definido de temperaturas determinándose las temperaturas de fusión para diferentes temperaturas de cristalización, obteniéndose los siguientes datos:

T _c (K)	200	210	220	230	240	250
T _m (K)	240	243,5	247	249,5	254	257,5

Determinar la temperatura de fusión de equilibrio.

12.- Para un homopolímero lineal cristalizado se determinaron a diferentes temperaturas los espesores y las temperaturas de fusión mediante difracción de rayos x y DSC, respectivamente. Los datos obtenidos fueron:

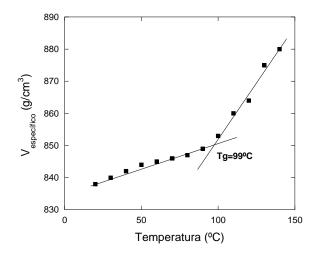
T _m (K)	364	390	410	412,5
I(Å)	50	100	500	1000

Determina la temperatura de fusión de equilibrio para este polímero.

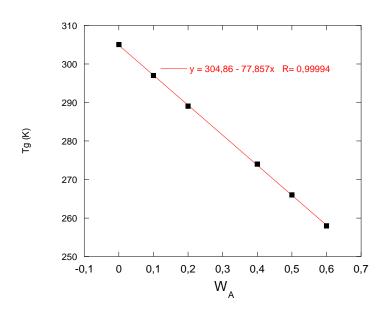
Soluciones

1.-a) 3571; c) 898 nm; d) 169 nm²; e) 13 nm; e) 18 nm.

2.- a) 21,3 nm; b) 30,2 nm; c) 2,44.

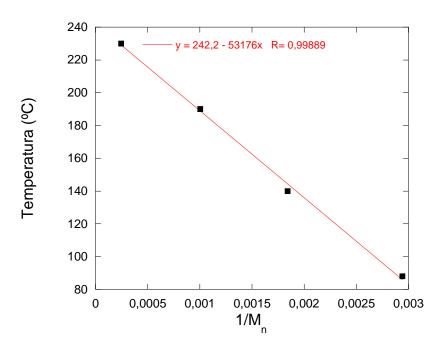

3.- El grupo lateral en poli(1-hexano) es una cadena de cuatro carbonos lineal y flexible, sin embargo, para el caso del poli(metilpentano) el sustituyente es ramificado por lo tanto más rígido, lo que hará que presente una mayor Tg con respecto al primero.

4.- a.- El polietileno es una molécula más flexible que el polipropileno dado que este último presenta un grupo lateral que dificulta la rotación de la cadena.

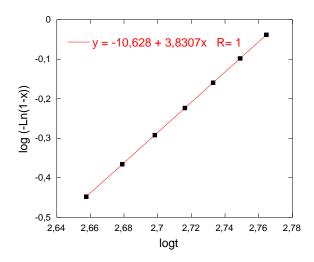

b.- Los grupos OH del poli(vinil alcohol) reducen la flexibilidad de este con respecto al poli(oxido de etileno), polímero lineal y flexible. Además, el enlace C-O del POE es más flexible que el enlace C-C. Todo ello hace que el poli(óxido de etileno) presente una mejor Tg.

c.- El poli(acrilato de etilo) presenta un grupo lateral de cadena larga y flexible mientras que en el caso del poli(metacrilato de metilo) éste es más corto y voluminoso por lo que su movilidad se verá limitada presentando una Tg mayor.

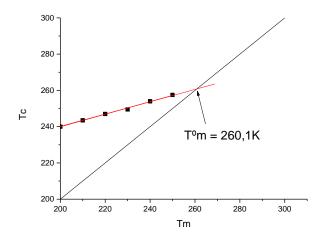
5.-



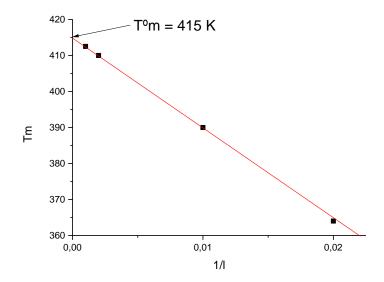
6.-


57,6% plastificante.

7.-



487 g/mol.


8.-a) Obtener cristales homogéneos; b) Obtener cristales con mayor periodo.

11.-

12.-

