HOW TO SOLVE PRACTICAL ASPECTS OF MICROBIOLOGY

5. CALCULATION OF INOCULUM SIZE

Inés Arana, Maite Orruño \& Isabel Barcina

Department of Immunology, Microbiology and Parasitology
University of the Basque Country
Universidad del País Vasco (UPV/EHU)
OCW 2013

5. CALCULATION OF INOCULUM SIZE

Often it is necessary to know the initial cell density of a culture, for example when we wish to determine the growth characteristics of a microorganism, or for the industrial production of certain compounds.

This situation is reflected in the following diagram:

From a culture with a density of A cells $/ \mathrm{ml}, \mathrm{X} \mathrm{ml}$ are transfer to a new flask to obtain a final cellular density of B cells $/ \mathrm{ml}$. The problems, with more or less complexity, are always reduced to this scheme: we want to know the densities of A or B flasks or the volume of inoculum.

To solve these problems, it is important to note that if a flask (B) has a volume of 100 ml and a density of 10^{6} cells $/ \mathrm{ml}$, the total number of cells in the flask will be 10^{8} cells (density x volume). These 10^{8} cells have been transferred in X ml (inoculum). The volume of this inoculum depends on the density of the initial culture (A).

This scheme will be useful to solve problems like the following one:
5.1. From a bacterial culture with a density of 2.2510^{7} cells $/ \mathrm{ml}$, we have inoculated a flask containing 1.5 liters of sterile culture medium. If the volume used as inoculum has been 10 ml , which is the bacterial density in the flask?

SOLUTION

5.1. Density into the flask?

$A=2.2510^{8}$ cells transferred

$$
\frac{2.2510^{8} \text { cells }}{1,500 \mathrm{ml}}
$$

