Welcome
db4o is the native Java, .NET and Mono open source object database.

This tutorial was written to get you started with db4o as quickly as possible. Before you start, please
make sure that you have downloaded the latest db4o distribution from the db4objects website.

developer.db4o.com
You are invited to join the db4o community in the public db4o forums to ask for help at any time.

Please also try out the keyword search functionality on the db4o knowledgebase.

Links

Here are some further links on developer.db4o.com that you may find useful:
All Downloads

Release Note Blog

SVN Access

Design Wiki

Community Projects

http://www.db4o.com
http://developer.db4o.com/forums/default.aspx
http://developer.db4o.com/Resources/kb.aspx
http://download.db4o.com
http://developer.db4o.com/blogs/product_news/default.aspx
http://developer.db4o.com/Resources/view.aspx/Working_With_Source_Code
http://developer.db4o.com/ProjectSpaces/view.aspx/Db4o_Product_Design
http://developer.db4o.com/ProjectSpaces/default.aspx

Download Contents

The db4o Java distribution comes as one zip file, db4o-6.3-java.zip. When you unzip this file, you get

the following directory structure:

I dbdo-B.3

. BB doc

-2 api

@ indes bt

== reference

L E-EE himl

fo G index him

El-L=F tutonal

E-E2 sic

----- | dbda-B. 3tutorial pdf
fe g indes. html

- (& readme.html

B2 lib
- = antjar

----- | bloat-1.0.ar

- =] dbdo-6. 3-dbdaurit jar
----- =] dbdo-B 3-javal 1 jar
e = dbdo-B. 3-aval . 2jar
----- | dbdo-6.3-javab jar
|2 dbdo-B.3ngopt.jar
o | Mdl:u#u:u-E.E-ta.iar

i@ dbdaolicense html
b G readme. hitml

Please take a look at all the supplied documentation formats to choose the one that works best for

you:

db40-6.3/doc/api/index.html

The API documentation for db4o is supplied as JavaDocs HTML files. While you read through this

Javadoc APl documentation

Feference documentstion

Tutorial sources and zamples
PDF tutarial for best searching
Irteractive HTMWL tutorial

Mative gquery optimization at build time
Mative gquery optimization at runtime
dbdounit testing framework

dbdo engine for JOK 1.1x

dbdo engine for JOK 1.2.x1t01 4%

dbdo engine for JOK 5.x and later

Mative gquery optimizer for build and rurtime

dbdo Transparent Activation frameswork
complete dbdo zources (includes TA framework)
MU General Public License

tutorial it may be helpful to look into the API documentation occasionaly.

db4o-6.3/doc/reference/index.html

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

The reference documentation is a complete compilation for experienced db4o users. It is maintained
online.

db4o-6.3/doc/tutorial/index.html
This is the interactive HTML tutorial. Examples can be run "live" against a db4o database from within
the browser. In order to use the interactive functionality a Java JRE 1.3 or above needs to be installed

and integrated into the browser. Java security settings have to allow applets to be run.

db4o0-6.3/doc/tutorial/db4o-6.3-tutorial.pdf

The PDF version of the tutorial allows best fulltext search capabilities.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://developer.db4o.com/Resources/view.aspx/Reference

1. First Glance
Before diving straight into the first source code samples let's get you familiar with some basics.

1.1. The db4o engine...

The db4o object database engine consists of one single jar file. This is all that you need to program
against. The versions supplied with the distribution can be found in /db40-6.3/lib/. You will only need
one of the following libraries, not all of them.

db4o-6.3-javal.l.jar
will run with most Java JDKs that supply JDK 1.1.x functionality such as reflection and Exception
handling. That includes many IBM]9 configurations, Symbian and Savaje.

db4o-6.3-javal.2.jar
is built for all Java JDKs between 1.2 and 1.4.

db4o0-6.3-javab.jar
is built for Java JDK 5.

1.2. Installation
If you add one of the above db4o-*.jar files to your CLASSPATH db4o is installed. In case you work
with an integrated development environment like Eclipse you would copy the db4o-*.jar to the /lib/

folder under your project and add db4o to your project as a library.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.eclipse.org

1.3. API Overview
Do not forget the API documentation while reading through this tutorial. It provides an organized view
of the API, looking from a java package perspective and you may find related functionality to the

theme you are currently reading up on.

For starters, the java packages com.db4o and com.db4o.query are all that you need to worry about.

com.dbd4o

The com.db4o java package contains almost all of the functionality you will commonly need when using

db4o. Two objects of note are com.db4o.Db4o, and the com.db4o.0ObjectContainer interface.

The com.db4o.Db4o factory is your starting point. Static methods in this class allow you to open a
database file, start a server, or connect to an existing server. It also lets you configure the db4o

environment before opening a database.

The most important interface, and the one that you will be using 99% of the time is
com.db4o.0bjectContainer: This is your db4o database.

- An ObjectContainer can either be a database in single-user mode or a client connection to a db4o
server.

- Every ObjectContainer owns one transaction. All work is transactional. When you open an
ObjectContainer, you are in a transaction, when you commit() or rollback(), the next transaction is
started immediately.

- Every ObjectContainer maintains it's own references to stored and instantiated objects. In doing so, it
manages object identities, and is able to achieve a high level of performance.

- ObjectContainers are intended to be kept open as long as you work against them. When you close an

ObjectContainer, all database references to objects in RAM will be discarded.

com.db4o.ext

In case you wonder why you only see very few methods in an ObjectContainer, here is why: The db4o
interface is supplied in two steps in two java packages, com.db4o and com.db4o.ext for the following
reasons:

- It's easier to get started, because the important methods are emphasized.

- It will be easier for other products to copy the basic db4o interface.

- It is an example of how a lightweight version of db4o could look.

Every com.db4o.0bjectContainer object is also an com.db4o.ext.ExtObjectContainer. You can cast it to

ExtObjectContainer or you can use the method to get to the advanced features.

com.db4o.config

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

The com.db4o.config java package contains types and classes necessary to configure db4o. The objects

and interfaces within are discussed in the Configuration section.
com.db4o.query
The com.db4o.query java package contains the Predicate class to construct Native Queries. The Native

Query interface is the primary db4o querying interface and should be preferred over the Soda Query
API.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Configuration
#Query

2. First Steps

Let's get started as simple as possible. We are going to demonstrate how to store, retrieve, update and
delete instances of a single class that only contains primitive and String members. In our example this
will be a Formula One (F1) pilot whose attributes are his name and the F1 points he has already gained

this season.

First we create a class to hold our data. It looks like this:

package com db4o.f 1. chapterl

public class Pilot {
private String narne;

private int points;
public Pilot(String name,int points) ({

t hi s. nanme=nane;

t hi s. poi nt s=poi nts;

public int getPoints() {

return points;

public void addPoi nts(int points) ({

t hi s. poi nt s+=poi nt s;

public String get Name() {

return nane;

public String toString() {

return name+"/" +points;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Notice that this class does not contain any db4o-related code.

2.1. Opening the database

To access a db4o database file or create a new one, call Db4o.openFile() and provide the path to your
database file as the parameter, to obtain an ObjectContainer instance. ObjectContainer represents
"The Database", and will be your primary interface to db4o. Closing the ObjectContainer with the

#close() method will close the database file and release all resources associated with it.

/| accessDb4o

bj ect Cont ai ner db=Db4o. openFi | e(Uti | . DB4CFI LENAME) ;

try {
/1 do sonething with dbdo

}
finally {

db. cl ose();

For the following examples we will assume that our environment takes care of opening and closing the

ObjectContainer automagically, and stores the reference in a variable named 'db'.

2.2. Storing objects

To store an object, we simply call set() on our database, passing any object as a parameter.

/] storeFirstPil ot

Pilot pilotl=new Pilot("M chael Schumacher", 100);
db. set(pilotl);
Systemout.println("Stored "+pilotl);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We'll need a second pilot, too.

/'l storeSecondPil ot

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pilot2);
Systemout.println("Stored "+pilot2);

2.3. Retrieving objects

db4o supplies three different quering systems, Query by Example (QBE), Native Queries (NQ) and the
SODA Query API (SODA). In this first example we will introduce QBE. Once you are familiar with

storing objects, we encourage you to use Native Queries, the main db4o querying interface.

When using Query-By-Example, you create a prototypical object for db4o to use as an example of what
you wish to retrieve. db4o will retrieve all objects of the given type that contain the same (nhon-
default) field values as the example. The results will be returned as an ObjectSet instance. We will use

a convenience method #listResult() to display the contents of our result ObjectSet :

public static void listResult(ObjectSet result) {
Systemout.println(result.size());
whil e(result. hasNext()) {

Systemout.println(result.next());

To retrieve all pilots from our database, we provide an 'empty' prototype:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#NativeQueries

/1 retrieveAllPil ot BE

Pil ot proto=new Pilot(null,0);

bj ect Set resul t =db. get (proto);
listResult(result);

Note that we specify 0 points, but our results were not constrained to only those Pilots with 0 points; 0
is the default value for int fields.

db4o also supplies a shortcut to retrieve all instances of a class:

I/l retrieveAllPilots

bj ect Set resul t =db. get (Pi | ot. cl ass);
listResult(result);

For JDK 5 there also is a generics shortcut, using the query method:

List <Pilot> pilots = db.query(Pilot.class);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

To query for a pilot by name:

/1 retrievePil ot ByName

Pil ot proto=new Pilot ("M chael Schumacher", 0);

bj ect Set resul t =db. get (proto);
listResult(result);

And to query for Pilots with a specific number of points:

/] retrievePil ot ByExact Poi nts

Pil ot proto=new Pilot(null, 100);

bj ect Set resul t =db. get (proto);
listResult(result);

Of course there's much more to db4o queries. They will be covered in more depth in later chapters.

2.4. Updating objects

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Updating objects is just as easy as storing them. In fact, you use the same set() method to update
your objects: just call set() again after modifying any object.

/| updat ePi | ot

bj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));

Pilot found=(Pilot)result.next();

found. addPoi nt s(11);

db. set (found);

System out.println("Added 11 points for "+found);
retrieveAl |l Pilots(db);

Notice that we query for the object first. This is an importaint point. When you call set() to modify a
stored object, if the object is not 'known' (having been previously stored or retrieved during the
current session), db4o will insert a new object. db4o does this because it does not automatically match
up objects to be stored, with objects previously stored. It assumes you are inserting a second object

which happens to have the same field values.

To make sure you've updated the pilot, please return to any of the retrieval examples above and run

them again.

2.5. Deleting objects

Objects are removed from the database using the delete() method.

/1 del et eFirstPil ot ByNare

bj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));

Pil ot found=(Pilot)result.next();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. del et e(f ound) ;
System out. println("Del eted "+found);
retrieveAll Pilots(db);

Let's delete the other one, too.

/| del et eSecondPi | ot ByNarne

bj ect Set resul t =db. get (new Pi | ot ("Rubens Barrichello",0));
Pilot found=(Pilot)result.next();

db. del et e(f ound) ;

Systemout. println("Del eted "+found);

retrieveAl |l Pilots(db);

Please check the deletion with the retrieval examples above.

As with updating objects, the object to be deleted has to be 'known' to db4o. It is not sufficient to
provide a prototype object with the same field values.

2.6. Conclusion

That was easy, wasn't it? We have stored, retrieved, updated and deleted objects with a few lines of

code. But what about complex queries? Let's have a look at the restrictions of QBE and alternative
approaches in the next chapter .

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Query

2.7. Full source

package com db4o.f 1. chapteri;

i mport java.io.File;

i mport com db4o. Db4o;

i mport com db4o. Obj ect Cont ai ner;
i mport com db4o. Obj ect Set ;

i mport com db4o.f1. Uil;

public class FirstStepsExanpl e extends Util {
public static void main(String[] args) {
new File(Util.DBA4OFI LENAME). del ete();
accessDb4o();
new File(Util.DBA4OFI LENAME). del ete();
nj ect Cont ai ner db=Db4o. openFil e(Util| . DB40OFI LENAME) ;
try {
storeFirstPil ot (db);
st oreSecondPi | ot (db) ;
retrieveAl |l Pilots(db);
retrievePil ot ByNanme(db) ;
retrievePil ot ByExact Poi nt s(db) ;
updat ePi | ot (db) ;
del et eFi r st Pi | ot ByNane(db) ;
del et eSecondPi | ot ByNane(db) ;
}
finally {
db. cl ose();

public static void accessDb4do() {

nj ect Cont ai ner db=Db4o. openFil e(Uti| . DB4OFI LENANME) ;

try {
/1 do sonething with db4do

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

}
finally {

db. cl ose();

public static void storeFirstPil ot (QbjectContainer db) ({
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
db.set(pilotl);
Systemout.println("Stored "+pilotl);

public static void storeSecondPil ot (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pil ot 2);
Systemout.println("Stored "+pilot?2);

public static void retrieveAll Pil ot QBE(Obj ect Cont ai ner db) {
Pil ot proto=new Pilot(null,0);
nj ect Set resul t =db. get (proto);

listResult(result);

public static void retrieveAllPil ots(ObjectContainer db) {
nj ect Set resul t =db. get (Pil ot. cl ass);

listResult(result);

public static void retrievePil ot ByNane(Obj ect Cont ai ner db) {
Pil ot proto=new Pilot("M chael Schumacher", 0);
nj ect Set resul t =db. get (proto);

listResult(result);

public static void retrievePil ot ByExact Poi nt s(Obj ect Cont ai ner db)
Pil ot proto=new Pilot(null,100);

nj ect Set resul t =db. get (proto);

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void updatePil ot (Obj ect Contai ner db) {
nj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot found=(Pilot)result.next();
f ound. addPoi nt s(11) ;
db. set (f ound) ;
System out. println("Added 11 points for "+found);
retrieveAl |l Pilots(db);

public static void del et eFirstPil ot ByNane(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Pi |l ot ("M chael Schumacher", 0));
Pilot found=(Pilot)result.next();
db. del et e(f ound) ;
System out. println("Del eted "+f ound);
retrieveAl |l Pilots(db);

public static void del et eSecondPi | ot ByName(Cbj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Pi | ot ("Rubens Barrichello",0));
Pilot found=(Pilot)result.next();
db. del et e(f ound) ;
System out. println("Del eted "+found);
retrieveAl |l Pilots(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3. Querying

db4o supplies three querying systems, Query-By-Example (QBE) Native Queries (NQ), and the SODA
API. In the previous chapter, you were briefly introduced to Query By Example(QBE).

Query-By-Example (QBE) is appropriate as a quick start for users who are still acclimating to storing
and retrieving objects with db4o.

Native Queries (NQ) are the main db4o query interface, recommended for general use.

SODA is the underlying internal API. It is provided for backward compatibility and it can be useful for
dynamic generation of queries, where NQ are too strongly typed.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.1. Query by Example (QBE)

When using Query By Example (QBE) you provide db4o with a template object. db4o will return all of
the objects which match all non-default field values. This is done via reflecting all of the fields and
building a query expression where all non-default-value fields are combined with AND expressions.
Here's an example from the previous chapter:

/1 retrievePil ot ByName

Pil ot proto=new Pilot("M chael Schumacher", 0);
nj ect Set resul t =db. get (proto);

listResult(result);

Querying this way has some obvious limitations:

- db4o must reflect all members of your example object.

- You cannot perform advanced query expressions. (AND, OR, NOT, etc.)

- You cannot constrain on values like 0 (integers), "" (empty strings), or nulls (reference types)
because they would be interpreted as unconstrained.

- You need to be able to create objects without initialized fields. That means you can not initialize fields
where they are declared. You can not enforce contracts that objects of a class are only allowed in a
well-defined initialized state.

- You need a constructor to create objects without initialized fields.

To get around all of these constraints, db4o provides the Native Query (NQ) system.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.2. Native Queries

Wouldn't it be nice to pose queries in the programming language that you are using? Wouldn't it be
nice if all your query code was 100% typesafe, 100% compile-time checked and 100% refactorable?
Wouldn't it be nice if the full power of object-orientation could be used by calling methods from within
queries? Enter Native Queries.

Native queries are the main db4o query interface and they are the recommended way to query
databases from your application. Because native queries simply use the semantics of your

programming language, they are perfectly standardized and a safe choice for the future.

Native Queries are available for all platforms supported by db4o.

3.2.1. Concept

The concept of native queries is taken from the following two papers:

- Cook/Rosenberger, Native Queries for Persistent Objects, A Design White Paper

- Cook/Rai, Safe Query Objects: Statically Typed Objects as Remotely Executable Queries

3.2.2. Principle

Native Queries provide the ability to run one or more lines of code against all instances of a class.
Native query expressions should return true to mark specific instances as part of the result set. db4o
will attempt to optimize native query expressions and run them against indexes and without
instantiating actual objects, where this is possible.

3.2.3. Simple Example
Let's look at how a simple native query will look like in some of the programming languages and

dialects that db4o supports:

C# .NET 2.0

IList <Pilot> pilots = db. Query <Pilot> (del egate(Pilot pilot) {
return pilot.Points == 100;
1)

Java JDK 5

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.cs.utexas.edu/users/wcook/papers/NativeQueries/NativeQueries8-23-05.pdf
http://www.cs.utexas.edu/users/wcook/papers/SafeQuery05/SafeQueryFinal.pdf

List <Pilot> pilots = db.query(new Predicate<Pilot>() {
public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

1)

Java JDK 1.2 to 1.4

List pilots = db. query(new Predicate() ({
public bool ean match(Pilot pilot) ({
return pilot.getPoints() == 100;

1)

Java JDK 1.1

nj ect Set pilots = db. query(new Pil ot Hundr edPoi nts());
public static class PilotHundredPoi nts extends Predicate {

public bool ean match(Pilot pilot) {
return pilot.getPoints() == 100;

C# .NET 1.1

IList pilots = db. Query(new Pil ot Hundr edPoi nts());
public class Pil ot HundredPoints : Predicate {

public bool ean Match(Pilot pilot) {
return pilot.Points == 100;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

VB .NET 1.1

Dimpilots As |List = db. Query(new Pil ot Hundr edPoi nt s())

Public C ass Pil ot Hundr edPoi nt s
I nherits Predicate
Public Function Match (pilot As Pilot) as Bool ean
If pilot.Points = 100 Then
Return True
El se
Return Fal se
End Functi on

End d ass

A side note on the above syntax:
For all dialects without support for generics, Native Queries work by convention. A class that extends
the com.db4o.Predicate class is expected to have a boolean #match() method with one parameter to

describe the class extent:

bool ean mat ch(Pi | ot candi date);

When using native queries, don't forget that modern integrated development environments (IDEs) can
do all the typing work around the native query expression for you, if you use templates and

autocompletion.

Here is how to configure a Native Query template with Eclipse 3.1:
From the menu, choose Window + Preferences + Java + Editor + Templates + New
As the name type "nq". Make sure that "java" is selected as the context on the right. Paste the

following into the pattern field:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

List <${extent}> list = db.query(new Predicate <${extent}> () {
publ i ¢ bool ean mat ch(${extent} candi date){

return true,

1)

Now you can create a native query with three keys: n + q + Control-Space.

Similar features are available in most modern IDEs.

3.2.4. Advanced Example
For complex queries, the native syntax is very precise and quick to write. Let's compare to a SODA

query that finds all pilots with a given name or a score within a given range:

/! storePilots

db. set (new Pil ot ("M chael Schumacher", 100));
db. set (new Pi | ot ("Rubens Barrichello",99));

/] retrieveConpl exSODA

Query query=db. query();

qguery.constrain(Pilot.class);

Query poi nt Query=query. descend(" poi nts");

guery. descend("nanme") . constrai n("Rubens Barrichello")
.or(poi nt Query. constrai n(new | nteger(99)).greater()

.and(poi nt Query. constrai n(new | nteger(199)).smaller()));

bj ect Set resul t =query. execut e();
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Here is how the same query will look like with native query syntax, fully accessible to autocompletion,
refactoring and other IDE features, fully checked at compile time:

C# .NET 2.0

IList <Pilot> result = db. Query<Pilot> (del egate(Pilot pilot) {
return pilot.Points > 99
&& pilot.Points < 199
|| pilot.Name == "Rubens Barrichell o0";

1)

Java JDK 5

List <Pilot> result = db.query(new Predicate<Pilot>() {
publ i ¢ bool ean match(Pilot pilot) {
return pilot.getPoints() > 99
&& pilot.getPoints() < 199
|| pilot.getNanme().equal s("Rubens Barrichello");

1)

3.2.5. Arbitrary Code
Basically that's all there is to know about native queries to be able to use them efficiently. In principle
you can run arbitrary code as native queries, you just have to be very careful with side effects -

especially those that might affect persistent objects.

Let's run an example that involves some more of the language features available.

/1 retrieveArbitraryCodeNQ

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

final int[] points={1, 100};
bj ect Set resul t =db. query(new Predi cate() {
publ i ¢ bool ean match(Pilot pilot) {
for(int i=0;i<points.length;i++) {
if(pilot.getPoints()==points[i]) {

return true,

}
return pilot.getNane().startsWth("Rubens");

1)
listResult(result);

3.2.6. Native Query Performance

One drawback of native queries has to be pointed out: Under the hood db4o tries to analyze native
queries to convert them to SODA. This is not possible for all queries. For some queries it is very
difficult to analyze the flowgraph. In this case db4o will have to instantiate some of the persistent
objects to actually run the native query code. db4o will try to analyze parts of native query expressions

to keep object instantiation to the minimum.

The development of the native query optimization processor will be an ongoing process in a close
dialog with the db4o community. Feel free to contribute your results and your needs by providing
feedback to our db4o forums.

The current state of the query optimization process is detailed in the chapter on Native Query

Optimization

With the current implementation, all above examples will run optimized, except for the "Arbitrary

Code" example - we are working on it.

3.2.7. Full source

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://forums.db4o.com/
#NQOptimization
#NQOptimization

package com db4o.f 1. chapterl

i mport com db4o. *;
i mport com db4o.f1.*;
i mport com db4o. query. *;

public class NQExanpl e extends Util {

public static void main(String[] args) {
nj ect Cont ai ner db=Db4o. openFi |l e(Uti| . DB4OFI LENANE)
try {
storePil ot s(db);
retri eveConpl exSODA(db) ;
retri eveConpl exNQ db) ;
retrieveArbitraryCodeNQ db);
cl ear Dat abase(db) ;
}
finally {
db. cl ose();

public static void storePil ots(ObjectContainer db) {
db. set (new Pil ot ("M chael Schumacher", 100));
db. set (new Pi |l ot ("Rubens Barrichello", 99));

public static void retrieveConpl exSODA(Obj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
Query poi nt Query=query. descend(" poi nts");
guery. descend("nane"). constrai n("Rubens Barrichello")
.or(poi nt Query. constrai n(new I nteger(99)).greater()
. and(poi nt Query. constrai n(new
Integer(199)).smaller()));
nj ect Set resul t =query. execute();

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void retrieveConpl exNQ Obj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Pilot pilot) ({
return pilot.getPoints()>99
&& pil ot . get Poi nt s() <199
|| pilot.getNanme().equal s("Rubens Barrichello");

1)

listResult(result);

public static void retrieveArbitraryCodeNQ Object Contai ner db) ({
final int[] points={1, 100};
nj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Pilot pilot) {
for(int i=0;i<points.length;i++) {
i f(pilot.getPoints()==points[i]) {

return true;

}
return pilot.getNane().startsWth("Rubens");

1)

listResult(result);

public static void cl ear Dat abase(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (Pil ot. cl ass);
whil e(result. hasNext()) {
db. del ete(result. next());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

3.3. SODA Query API

The SODA query API is db4o's low level querying API, allowing direct access to nodes of query graphs.
Since SODA uses strings to identify fields, it is neither perfectly typesafe nor compile-time checked and
it also is quite verbose to write.

For most applications Native Queries will be the better querying interface.

However there can be applications where dynamic generation of queries is required, that's why SODA

is explained here.
3.3.1. Simple queries
Let's see how our familiar QBE queries are expressed with SODA. A new Query object is created

through the #query() method of the ObjectContainer and we can add Constraint instances to it. To find

all Pilot instances, we constrain the query with the Pilot class object.

[/l retrieveAllPilots

Query query=db. query();
qguery.constrain(Pilot.class);
bj ect Set resul t =query. execut e();

listResult(result);

Basically, we are exchanging our 'real' prototype for a meta description of the objects we'd like to hunt
down: a query graph made up of query nodes and constraints. A query node is a placeholder for a

candidate object, a constraint decides whether to add or exclude candidates from the result.

Our first simple graph looks like this.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#NativeQueries

" O¢——[ctass . pilot |

We're just asking any candidate object (here: any object in the database) to be of type Pilot to
aggregate our result.

To retrieve a pilot by name, we have to further constrain the candidate pilots by descending to their
name field and constraining this with the respective candidate String.

/1 retrievePil ot ByNane

Query query=db. query();
guery.constrain(Pilot.class);

query. descend("nane").constrai n("M chael Schumacher");

bj ect Set resul t =query. execut e();
listResult(result);

What does 'descend' mean here? Well, just as we did in our 'real' prototypes, we can attach constraints
to child members of our candidates.

name

So a candidate needs to be of type Pilot and have a member named 'name’ that is equal to the given
String to be accepted for the result.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Note that the class constraint is not required: If we left it out, we would query for all objects that
contain a 'name' member with the given value. In most cases this will not be the desired behavior,
though.

Finding a pilot by exact points is analogous.We just have to cross the Java primitive/object divide.

/] retrievePil ot ByExact Poi nt's

Query query=db. query();
qguery.constrain(Pilot.class);

query. descend("poi nts").constrai n(new I nteger(100));

bj ect Set resul t =query. execut e();
listResult(result);

3.3.2. Advanced queries

Now there are occasions when we don't want to query for exact field values, but rather for value
ranges, objects not containing given member values, etc. This functionality is provided by the
Constraint API.

First, let's negate a query to find all pilots who are not Michael Schumacher:

/] retrieveByNegation

Query query=db. query();

query.constrai n(Pilot.cl ass);

query. descend("nane").constrai n("M chael Schumacher").not();
bj ect Set resul t =query. execut e();

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Where there is negation, the other boolean operators can't be too far.

/] retrieveByConjunction

Query query=db. query();

guery.constrain(Pilot.class);

Constrai nt constr=query.descend("nane")
.constrain("M chael Schumacher");

query. descend(" poi nts")

.constrain(new I nteger(99)).and(constr);

bj ect Set resul t =query. execut e();
listResult(result);

/] retrieveByDi sjunction

Query query=db. query();
guery.constrain(Pilot.class);
Constrai nt constr=query.descend("nane")
.constrain("M chael Schumacher");
query. descend(" poi nts")
.constrain(new I nteger(99)).or(constr);
bj ect Set resul t =query. execut e();
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We can also constrain to a comparison with a given value.

/] retrieveByConparison

Query query=db. query();
qguery.constrain(Pilot.class);
query. descend(" poi nts")

.constrain(new I nteger(99)).greater();

bj ect Set resul t =query. execut e();
listResult(result);

The query API also allows to query for field default values.

/1 retrieveByDefaul t Fi el dval ue

Pi | ot sonebody=new Pi | ot (" Sonebody el se", 0);

db. set (sonebody) ;

Query query=db. query();
qguery.constrain(Pilot.class);

query. descend("poi nts").constrai n(new I nteger(0));
bj ect Set resul t =query. execut e();
listResult(result);

db. del et e(sonebody) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

It is also possible to have db4o sort the results.

/! retrieveSorted

Query query=db. query();
guery.constrain(Pilot.class);

query. descend("nane"). order Ascendi ng() ;
bj ect Set resul t =query. execut e();
listResult(result);

query. descend(" nane") . or der Descendi ng() ;

resul t =query. execut e();
listResult(result);

All these techniques can be combined arbitrarily, of course. Please try it out. There still may be cases
left where the predefined query API constraints may not be sufficient - don't worry, you can always let
db4o run any arbitrary code that you provide in an Evaluation. Evaluations will be discussed in a later
chapter.

To prepare for the next chapter, let's clear the database.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Evaluations
#Evaluations

/] cl ear Dat abase

nj ect Set resul t =db. get (Pil ot. cl ass);
whil e(result. hasNext()) {
db. del ete(result. next());

OUTPUT:

3.3.3. Conclusion
Now you have been provided with three alternative approaches to query db4o databases: Query-By-

Example, Native Queries, SODA.

Which one is the best to use? Some hints:

- Native queries are targetted to be the primary interface for db4o, so they should be preferred.

- With the current state of the native query optimizer there may be queries that will execute faster in
SODA style, so it can be used to tune applications. SODA can also be more convenient for constructing
dynamic queries at runtime.

- Query-By-Example is nice for simple one-liners, but restricted in functionality. If you like this

approach, use it as long as it suits your application's needs.

Of course you can mix these strategies as needed.

We have finished our walkthrough and seen the various ways db4o provides to pose queries. But our
domain model is not complex at all, consisting of one class only. Let's have a look at the way db4o

handles object associations in the next chapter .

3.3.4. Full source

package com db4o.f 1. chapteri;

i mport com db4o. Db4o;

i mport com db4o. Qoj ect Cont ai ner;
i mport com db4o. Obj ect Set ;

i mport com db4o.f1. Uil;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Structured

i mport com db4o. query. Constrai nt;
i mport com db4o. query. Query;

public class QueryExanple extends Uil ({
public static void main(String[] args) {
nj ect Cont ai ner db=Db4o. openFil e(Uti| . DB4OFI LENANME)
try {
storeFirstPil ot (db);
st oreSecondPi | ot (db) ;
retrieveAl |l Pilots(db);
retrievePil ot ByNanme(db) ;
retrievePil ot ByExact Poi nt s(db) ;
retri eveByNegati on(db);
retri eveByConj uncti on(db);
retrieveByDi sjunction(db);
retri eveByConpari son(db);
retri eveByDef aul t Fi el dVal ue(db);
retrieveSorted(db);
cl ear Dat abase(db) ;
}
finally {
db. cl ose();

public static void storeFirstPil ot (CQbjectContainer db) ({
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
db. set (pilot1);
Systemout.println("Stored "+pilotl);

public static void storeSecondPil ot (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pil ot 2);
Systemout.println("Stored "+pilot?2);

public static void retrieveAllPil ots(ObjectContainer db) {

Query query=db. query();
guery.constrai n(Pilot.cl ass);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set resul t =query. execute();

listResult(result);

public static void retrievePil ot ByNane(Obj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane"). constrai n("M chael Schumacher");
nj ect Set resul t =query. execute();

listResult(result);

public static void retrievePil ot ByExact Poi nt s(
oj ect Cont ai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("poi nts").constrai n(new I nteger(100));
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByNegati on(Cbj ect Contai ner db) ({
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane"). constrai n("M chael Schumacher").not();
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByConjunction(ObjectContai ner db) {

Query query=db. query();

guery.constrai n(Pilot.cl ass);

Constrai nt constr=query. descend("nane"
.constrain("M chael Schumacher");

qguery. descend(" poi nts")
.constrain(new I nteger(99)).and(constr);

nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByD sjunction(ObjectContainer db) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Query query=db. query();

guery.constrai n(Pilot.cl ass);

Constrai nt constr=query. descend("nane"
.constrain("M chael Schumacher");

qguery. descend(" poi nts")
.constrain(new I nteger(99)).or(constr);

nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByConpari son(Cbject Contai ner db) ({
Query query=db. query();
guery.constrai n(Pilot.cl ass);
qguery. descend(" poi nts")
.constrain(new I nteger(99)).greater();
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveByDefaultFiel dval ue(
oj ect Cont ai ner db) {
Pi | ot sonebody=new Pi | ot (" Sonebody el se", 0);
db. set (sonebody) ;
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("poi nts").constrai n(new Integer(0));
nj ect Set resul t =query. execute();
listResult(result);

db. del et e(sonebody) ;

public static void retrieveSorted(Object Contai ner db) {
Query query=db. query();
guery.constrai n(Pilot.cl ass);
guery. descend("nane") . order Ascendi ng() ;
nj ect Set resul t =query. execute();
listResult(result);
guery. descend("nane"). or der Descendi ng() ;
resul t =query. execut e();

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void cl ear Dat abase(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (Pil ot. cl ass);
whil e(result. hasNext()) {
db. del ete(result. next());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

4. Structured objects

It's time to extend our business domain with another class and see how db4o handles object

interrelations. Let's give our pilot a vehicle.

package com db4o.f 1. chapter?2;
public class Car {
private String nodel;
private Pilot pilot;
public Car(String nodel) {

t hi s. npdel =npdel ;

this.pilot=null;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot = pilot;

public String getMdel () {

return nodel ;

public String toString() {

return mdel +"["+pi | ot +|l] ||;

4.1. Storing structured objects

To store a car with its pilot, we just call set() on our top level object, the car. The pilot will be stored

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

implicitly.

/] storeFirstCar
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot ("M chael Schumacher", 100);

carl.setPilot(pilotl);
db. set(carl);

Of course, we need some competition here. This time we explicitly store the pilot before entering the
car - this makes no difference.

/] storeSecondCar

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pil ot 2);

Car car2=new Car ("BMV);

car2.setPil ot (pilot?2);
db. set (car 2);

4.2. Retrieving structured objects

4.2.1. QBE

To retrieve all cars, we simply provide a 'blank' prototype.

/1l retrieveAl | Cars@BE
Car proto=new Car(null);

nj ect Set resul t =db. get (proto);

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We can also query for all pilots, of course.

/1 retrieveAllPilotsQBE

Pil ot proto=new Pilot(null,0);

bj ect Set resul t =db. get (proto);
listResult(result);

Now let's initialize our prototype to specify all cars driven by Rubens Barrichello.

/] retrieveCarByPil ot QBE

Pi | ot pilotproto=new Pilot("Rubens Barrichello",0);
Car carproto=new Car(null);

carproto.setPilot(pilotproto);

bj ect Set resul t =db. get (car prot o) ;
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

What about retrieving a pilot by car? We simply don't need that - if we already know the car, we can

simply access the pilot field directly.

4.2.2. Native Queries

Using native queries with constraints on deep structured objects is straightforward, you can do it just
like you would in plain other code.

Let's constrain our query to only those cars driven by a Pilot with a specific name:

/1 retrieveCarsByPil ot NaneNati ve

final String pilotNane = "Rubens Barrichello";
bj ect Set results = db. query(new Predicate() {
publ i c bool ean match(Car car){

return car.getPilot().getNane().equal s(pil ot Nane);

1)

listResult(results);

4.2.3. SODA Query API

In order to use SODA for querying for a car given its pilot's name we have to descend two levels into
our query.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/] retrieveCarByPil ot NameQuery

Query query=db. query();

guery. constrain(Car.cl ass);

query. descend("pilot").descend("nane")
.constrai n("Rubens Barrichello");

bj ect Set resul t =query. execut e();
listResult(result);

We can also constrain the pilot field with a prototype to achieve the same result.

/1 retrieveCarByPil ot Prot oQuery

Query query=db. query();
query. constrain(Car. cl ass);
Pi | ot proto=new Pil ot ("Rubens Barrichello", 0);

query. descend("pilot").constrai n(proto);

bj ect Set resul t =query. execut e();
listResult(result);

We have seen that descending into a query provides us with another query. Starting out from a query
root we can descend in multiple directions. In practice this is the same as ascending from one child to

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

a parent and descending to another child. We can conclude that queries turn one-directional references
in our objects into true relations. Here is an example that queries for "a Pilot that is being referenced

by a Car, where the Car model is 'Ferrari'™:

/] retrievePil ot ByCar Model Query

Query carquery=db. query();
carquery. constrain(Car.cl ass);
car query. descend("nodel ").constrain("Ferrari");

Query pil otquery=carquery. descend("pilot");

bj ect Set resul t =pi | ot query. execut e();
listResult(result);

model ilet

4.3. Updating structured objects

To update structured objects in db4o, we simply call set() on them again.

/| updat eCar

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Obj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car.get Mdel ().equal s("Ferrari");

1)
Car found=(Car)result.next();
found. set Pi |l ot (new Pil ot (" Sonebody el se",0));
db. set (found);
resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car.get Mdel ().equal s("Ferrari");

1)
listResult(result);

Let's modify the pilot, too.

/] updat ePi | ot Si ngl eSessi on

Obj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car.get Mddel ().equal s("Ferrari");

1)

Car found=(Car)result.next();

found. getPil ot ().addPoi nts(1);

db. set (found);

resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car.get Mddel ().equal s("Ferrari");

1)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

listResult(result);

Nice and easy, isn't it? But wait, there's something evil lurking right behind the corner. Let's see what
happens if we split this task in two separate db4o sessions: In the first we modify our pilot and update
his car:

/| updat ePi | ot Separ at eSessi onsPart 1

Obj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car.get Mdel ().equal s("Ferrari");

1)

Car found=(Car)result.next();
found. getPil ot ().addPoi nts(1);
db. set (found);

And in the second, we'll double-check our modification:

/| updat ePi | ot Separ at eSessi onsPart 2
bj ect Set resul t =db. query(new Predi cate() {

public bool ean match(Car car){

return car.get Mddel ().equal s("Ferrari");

1)
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Looks like we're in trouble: Why did the Pilot's points not change? What's happening here and what can
we do to fix it?

4.3.1. Update depth

Imagine a complex object with many members that have many members themselves. When updating
this object, db4o would have to update all its children, grandchildren, etc. This poses a severe

performance penalty and will not be necessary in most cases - sometimes, however, it will.

So, in our previous update example, we were modifying the Pilot child of a Car object. When we saved
the change, we told db4o to save our Car object and asumed that the modified Pilot would be updated.
But we were modifying and saving in the same manner as we were in the first update sample, so why
did it work before? The first time we made the modification, db4o never actually had to retreive the
modified Pilot it returned the same one that was still in memory that we modified, but it never actually
updated the database. The fact that we saw the modified value was, in fact, a bug. Restarting the

application would show that the value was unchanged.

To be able to handle this dilemma as flexible as possible, db4o introduces the concept of update depth
to control how deep an object's member tree will be traversed on update. The default update depth for
all objects is 1, meaning that only primitive and String members will be updated, but changes in object
members will not be reflected.

db4o provides means to control update depth with very fine granularity. For our current problem we'll

advise db4o to update the full graph for Car objects by setting cascadeOnUpdate() for this class

accordingly.

/1 updat ePi | ot Separ at eSessi onsl nmpr ovedPart 1

Db4o. configure().objectd ass("com db4o.f1l.chapter?2. Car")
. cascadeOnUpdat e(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/| updat ePi | ot Separ at eSessi ons| npr ovedPart 2

bj ect Set resul t =db. query(new Predi cate() {

public bool ean match(Car car){

return car.get Mdel ().equal s("Ferrari");

1)

Car found=(Car)result.next();
found. getPil ot ().addPoi nts(1);
db. set (found);

/| updat ePi | ot Separ at eSessi onsl| npr ovedPart 3

bj ect Set resul t =db. query(new Predi cate() {

publ i c bool ean match(Car car){

return car.get Mdel ().equal s("Ferrari");

1)
listResult(result);

This looks much better.

Note that container configuration must be set before the container is opened.

We'll cover update depth as well as other issues with complex object graphs and the respective db4o

configuration options in more detail in a later chapter.

4.4. Deleting structured objects

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

As we have already seen, we call delete() on objects to get rid of them.

/! del et eFl at

Obj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car.get Mdel ().equal s("Ferrari");

1)

Car found=(Car)result.next();
db. del et e(f ound) ;

resul t =db. get (new Car(null));

listResult(result);

Fine, the car is gone. What about the pilots?

/1 retrieveAllPilotsQBE

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ok, this is no real surprise - we don't expect a pilot to vanish when his car is disposed of in real life,

too. But what if we want an object's children to be thrown away on deletion, too?

4.4.1. Recursive deletion

You may already suspect that the problem of recursive deletion (and perhaps its solution, too) is quite
similar to our little update problem, and you're right. Let's configure db4o to delete a car's pilot, too,
when the car is deleted.

/'l del et eDeepPart 1

Db4o. confi gure().objectd ass("com db4o. f 1. chapter2. Car")

. cascadeOnDel et e(true);

/'l del et eDeepPart 2

Obj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return car. get Mbdel (). equal s("BWV);

1)

Car found=(Car)result.next();

db. del et e(f ound) ;

resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return true,

1)
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Again: Note that all configuration must take place before the ObjectContainer is opened.

Let's have a look at our pilots again.

I/l retrieveAll Pilots

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);

listResult(result);

4.4.2. Recursive deletion revisited

But wait - what happens if the children of a removed object are still referenced by other objects?

/| del et eDeepRevi sited

bj ect Set resul t =db. query(new Predi cate() {
publ i ¢ bool ean match(Pilot pilot){

return pilot.getNane().equal s("M chael Schumacher");

1)

if ('result.hasNext()) {
Systemout.println("Pilot not found!'");
return;

}

Pilot pilot=(Pilot)result.next();

Car carl=new Car("Ferrari");

Car car2=new Car ("BWV);

carl.setPilot(pilot);

car2.setPilot(pilot);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. set (carl);

db. set (car2);

db. del et e(car 2);

resul t =db. query(new Predi cate() {
public bool ean match(Car car){

return true,

1)
listResult(result);

I/l retrieveAllPilots

Pil ot proto=new Pilot(null,0);
bj ect Set resul t =db. get (proto);
listResult(result);

Houston, we have a problem - and there's no simple solution at hand. Currently db4o does not check
whether objects to be deleted are referenced anywhere else, so please be very careful when using this
feature.

Let's clear our database for the next chapter.

/1 del eteAll

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set resul t =db. get (new Obj ect ());
whil e(result. hasNext()) {
db. del ete(result. next());

4.5. Conclusion

So much for object associations: We can hook into a root object and climb down its reference graph to
specify queries. But what about multi-valued objects like arrays and collections? We will cover this in
the next chapter .

4.6. Full source

package com db4o.f 1. chapter?2;

i mport java.io.File;

i mport com db4o. Db4o;

i mport com db4o. Qbj ect Cont ai ner;
i mport com db4o. Obj ect Set ;

i mport com db4o.f1. Uil;

i mport com db4o. query. Predi cat e;
i mport com db4o. query. Query;

public class StructuredExanpl e extends Util {
public static void main(String[] args) {
new File(Util.DBA4OFI LENAME). del ete();
nj ect Cont ai ner db=Db4o. openFil e(Uti | . DB4OFI LENAME) ;
try {
storeFirst Car (db);
st or eSecondCar (db) ;
retrieveAl | Car sQBE(db);
retrieveAll Pil ot sQBE(db);
retri eveCar ByPi | ot QBE(db) ;
retri eveCar ByPi | ot NaneQuery(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Collections

retrieveCar ByPi | ot Prot oQuery(db);
retrievePi | ot ByCar Model Query(db);
updat eCar (db) ;
updat ePi | ot Si ngl eSessi on(db) ;
updat ePi | ot Separ at eSessi onsPart 1(db) ;
db. cl ose();
db=Db4o. openFi |l e(Uti|. DB4OFI LENANME)
updat ePi | ot Separ at eSessi onsPart 2(db) ;
db. cl ose();
updat ePi | ot Separ at eSessi onsl nprovedPart 1();
db=Db4o. openFi |l e(Uti| . DB4OFI LENANME)
updat ePi | ot Separ at eSessi onsl npr ovedPart 2(db) ;
db. cl ose();
db=Db4o. openFi | e(Uti|. DB4OFI LENANME)
updat ePi | ot Separ at eSessi onsl npr ovedPart 3(db) ;
del et eFl at (db) ;
db. cl ose();
del et eDeepPart 1();
db=Db4o. openFi | e(Uti|. DB4OFI LENANME)
del et eDeepPart 2(db) ;
del et eDeepRevi si t ed(db);
}
finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. set(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
db. set (pilot2);
Car car2=new Car ("BMV);
car2.setPil ot (pilot?2);
db. set (car2);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void retrieveAl |l Car sQBE(Obj ect Cont ai ner db) {
Car proto=new Car(null);
nj ect Set resul t =db. get (proto);

listResult(result);

public static void retrieveAll Pil ot sQBE(hj ect Cont ai ner db) {
Pil ot proto=new Pilot(null,0);
nj ect Set resul t =db. get (proto);

listResult(result);

public static void retrieveAllPil ots(ObjectContainer db) {
nj ect Set resul t =db. get (Pil ot. cl ass);

listResult(result);

public static void retrieveCarByPil ot QBE(
oj ect Cont ai ner db) {
Pil ot pil otproto=new Pil ot ("Rubens Barrichello", 0);
Car carproto=new Car(null);
carproto. setPil ot (pilotproto);
nj ect Set resul t =db. get (car proto);

listResult(result);

public static void retrieveCarByPil ot NameQuer y(
oj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Car.cl ass);
qguery. descend("pilot").descend("name"
.constrain("Rubens Barrichello");
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveCarByPil ot Prot oQuery(
oj ect Cont ai ner db) {

Query query=db. query();
guery. constrain(Car.cl ass);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pil ot proto=new Pil ot ("Rubens Barrichello", 0);
guery. descend("pilot").constrain(proto);
nj ect Set resul t =query. execute();

listResult(result);

public static void retrievePil ot ByCar Model Quer y(Cbj ect Cont ai ner
db) {
Query carquery=db. query();
car query. constrai n(Car.cl ass);
car query. descend("nmodel ").constrain("Ferrari");
Query pil ot query=carquery. descend("pilot");
nj ect Set resul t =pi | ot query. execut e();

listResult(result);

public static void retrieveAllPilotsNative(QbjectContainer db) ({
nj ect Set results = db. query(new Predicate() {
publ i c bool ean match(Pilot pilot){

return true;

1)

listResult(results);

public static void retrieveAll Cars(ObjectContainer db) ({
nj ect Set results = db. get(Car.class);

listResult(results);

public static void retrieveCarsByPil ot NameNat i ve(Obj ect Cont ai ner
db) {
final String pilotName = "Rubens Barrichello";
nj ect Set results = db. query(new Predicate() {
public bool ean match(Car car) {

return car.getPilot().getName().equal s(pil ot Nane);

1)

listResult(results);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

publ

publ

publ

ic static void updateCar(CbjectContainer db) {
nj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)
Car found=(Car)result.next();
found. set Pi | ot (new Pi | ot (" Sorebody el se", 0));
db. set (f ound) ;
resul t =db. query(new Predi cate() {

publ i c bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

listResult(result);

ic static void updatePil ot Si ngl eSessi on(
oj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

Car found=(Car)result.next();

found. get Pi | ot ().addPoi nts(1);

db. set (f ound) ;

resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

listResult(result);

ic static void updatePil ot Separ at eSessi onsPart 1(
oj ect Cont ai ner db) {

nj ect Set resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return car.get Model ().equal s("Ferrari"),

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

1)

Car found=(Car)result.next();
found. get Pi | ot ().addPoi nts(1);
db. set (f ound) ;

public static void updatePil ot Separ at eSessi onsPart 2(
oj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

listResult(result);

public static void updatePil ot Separ at eSessi onsl nprovedPart 1() {
Db4o. configure().objectd ass("com db4o.f1.chapter?2. Car")
. cascadeOnUpdat e(true);

public static void updatePil ot Separ at eSessi onsl npr ovedPart 2(
oj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car) {

return car.get Model ().equal s("Ferrari"),

1)

Car found=(Car)result.next();
found. get Pi | ot ().addPoi nts(1);
db. set (f ound) ;

public static void updatePil ot Separ at eSessi onsl npr ovedPart 3(
oj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return car.get Model ().equal s("Ferrari"),

1)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

listResult(result);

public static void del et eFl at (Obj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Car car) {

return car.get Mddel ().equal s("Ferrari"),

1)

Car found=(Car)result.next();
db. del et e(f ound) ;

resul t =db. get (new Car(null));

listResult(result);

public static void del eteDeepPart1() ({
Db4o. configure().objectd ass("com db4o.f1l.chapter?2. Car")
. cascadeOnbDel et e(true);

public static void del et eDeepPart 2(Obj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return car. get Model (). equal s("BMN);

1)

Car found=(Car)result.next();

db. del et e(f ound) ;

resul t =db. query(new Predi cate() {
publ i c bool ean match(Car car) {

return true;

1)

listResult(result);

public static void del et eDeepRevi sited(Obj ect Cont ai ner db) {
nj ect Set resul t =db. query(new Predi cate() {
public bool ean match(Pilot pilot){

return pilot.getNane().equal s("M chael Schumacher");

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

1)

if (!'result.hasNext()) {
Systemout.println("Pilot not found!");
return;

}

Pilot pilot=(Pilot)result.next();

Car carl=new Car("Ferrari");

Car car2=new Car ("BMN);

carl.setPilot(pilot);

car2.setPilot(pilot);

db. set(carl);

db. set (car2);

db. del et e(car 2) ;

resul t =db. query(new Predi cate() {
public bool ean match(Car car) {

return true;

1)

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

5. Collections and Arrays

We will slowly move towards real-time data processing now by installing sensors to our car and

collecting their output.

package com db4o.f 1. chapter3;

i mport java.util.?*;

public class Sensor Readout {
private doubl e[] val ues;
private Date tine;

private Car car;

publ i c Sensor Readout (doubl e[] val ues, Date tine, Car car) {
t hi s. val ues=val ues;
this.time=tinme;

this.car=car;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public int getNumVal ues() ({

return val ues. | ength;

publ i c doubl e[] getVal ues(){

return val ues;

publ i c doubl e getVal ue(int idx) {

return val ues[idx];

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public String toString() {
StringBuffer str=new StringBuffer();
str.append(car.toString())

.append(" : ")
.append(time.getTine())
.append(" : ");

for(int idx=0;idx<values.!|ength;idx++) {
i f(idx>0) {

str.append(',"');
}

str.append(val ues[idx]);

}

return str.toString();

A car may produce its current sensor readout when requested and keep a list of readouts collected

during a race.

package com db4o.f 1. chapter3;

i mport java.util.*;

public class Car {
private String nodel;
private Pilot pilot;

private List history;

public Car(String nodel) {
t hi s(model , new Arraylist());

public Car(String nodel,List history) {
t hi s. nodel =nodel ;

this.pilot=null;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

t hi s. hi st ory=hi story;

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

public List getH story() {

return history;

public void snapshot () {
hi st ory. add(new Sensor Readout (pol | (), new Date(),this));

protected double[] poll() {
int factor=history.size()+1;

return new doubl e[]{0. 1d*factor, 0. 2d*fact or, 0. 3d*factor};

public String toString() {

return nodel +"["+pil ot +"]/"+hi story. size();

We will constrain ourselves to rather static data at the moment and add flexibility during the next
chapters.

5.1. Storing

This should be familiar by now.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/] storeFirstCar
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot ("M chael Schumacher", 100);

carl.setPilot(pilotl);
db. set(carl);

The second car will take two snapshots immediately at startup.

/| storeSecondCar

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMV);

car2.setPil ot (pilot?2);

car 2. snapshot () ;

car 2. snapshot () ;

db. set (car 2);

5.2. Retrieving

5.2.1. QBE

First let us verify that we indeed have taken snapshots.

/1 retrieveAl | Sensor Readout
Sensor Readout prot o=new Sensor Readout (nul |, null, null);

nj ect Set resul t s=db. get (proto);

listResult(results);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

As a prototype for an array, we provide an array of the same type, containing only the values we
expect the result to contain.

/1 retrieveSensor Readout QBE

Sensor Readout prot o=new Sensor Readout (
new doubl e[]1{0.3,0. 1}, null,null);
bj ect Set resul t s=db. get (proto);

listResult(results);

Note that the actual position of the given elements in the prototype array is irrelevant.

To retrieve a car by its stored sensor readouts, we install a history containing the sought-after values.

/1 retrieveCar QBE

Sensor Readout pr ot or eadout =new Sensor Readout (
new doubl e[]1{0.6,0.2},null,null);

Li st protohistory=new ArrayList();

pr ot ohi st ory. add(pr ot or eadout) ;

Car protocar=new Car (null, protohistory);

bj ect Set resul t =db. get (protocar);

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

We can also query for the collections themselves, since they are first class objects.

I/l retrieveCollections

bj ect Set resul t =db. get (new ArrayList());
listResult(result);

This doesn't work with arrays, though.

/1 retrieveArrays

Obj ect Set resul t =db. get (new doubl e[]{0. 6, 0. 4});
listResult(result);

5.2.2. Native Queries

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

If we want to use Native Queries to find SensorReadouts with matching values, we simply write this as

if we would check every single instance:

/! retrieveSensor Readout Nati ve

bj ect Set results = db. query(new Predicate() {
publ i ¢ bool ean mat ch(Sensor Readout candi date) {
return Arrays. bi narySear ch(candi dat e. get Val ues(), 0.3) >= 0
&& Arrays. bi narySear ch(candi dat e. get Val ues(), 1.0) >= 0;

1)
listResult(results);

And here's how we find Cars with matching readout values:

I/l retrieveCarNative

bj ect Set results = db. query(new Predicate() {
publ i ¢ bool ean mat ch(Car candi dat e) {

Li st history = candi date.getH story();

for(int i =0; i < history.size(); i++){
Sensor Readout readout = (SensorReadout)history.get(i);
i f(Arrays. bi narySear ch(readout . getVal ues(), 0.6) >= 0 ||
Arrays. bi narySear ch(readout. get Val ues(), 0.2) >= 0)

return true;

}

return false;

1)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

listResult(results);

5.2.3. Query API

Handling of arrays and collections is analogous to the previous example. First, lets retrieve only the
SensorReadouts with specific values:

/] retrieveSensor Readout Query

Query query=db. query();

guery. constrai n(Sensor Readout . cl ass) ;
Query val uequery=query. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));

val uequery. constrai n(new Doubl e(0.1));

bj ect Set resul t =query. execut e();
listResult(result);

Then let's get some Cars with matching Readout values:

/] retrieveCarQuery

Query query=db. query();
guery. constrain(Car.cl ass);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Query hi storyquery=query. descend("history");

hi st oryquery. constrai n(Sensor Readout . cl ass) ;
Query val uequer y=hi st oryquery. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));

val uequery. constrai n(new Doubl e(0.1));

bj ect Set resul t =query. execut e() ;
listResult(result);

5.3. Updating and deleting

This should be familiar, we just have to remember to take care of the update depth.

/| updateCarPartl

Db4o. confi gure().objectd ass(Car.cl ass).cascadeOnUpdat e(true);

/| updat eCar Part 2

bj ect Set results = db. query(new Predicate() {
publ i ¢ bool ean mat ch(Car candi dat e) {

return true,

1)

Car car=(Car)results.next();

car. snapshot () ;

db. set (car);

retri eveAl | Sensor Readout Nat i ve(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

There's nothing special about deleting arrays and collections, too.

Deleting an object from a collection is an update, too, of course.

/1 updat eCol | ection

bj ect Set results = db. query(new Predicate() {
publ i ¢ bool ean mat ch(Car candi dat e) {

return true,

1)

Car car =(Car)results.next();

car.getH story().renmove(0);

db. set (car.getH story());

results = db. query(new Predicate() {
publ i ¢ bool ean mat ch(Car candi dat e) {

return true,

1)
whi | e(resul ts. hasNext ()) {
car=(Car)resul ts. next();
for (int idx=0;idx<car.getH story().size();idx++) {

Systemout.println(car.getH story().get(idx));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

(This example also shows that with db4o it is quite easy to access object internals we were never

meant to see. Please keep this always in mind and be careful.)

We will delete all cars from the database again to prepare for the next chapter.

/] deleteAllPartl

Db4o. configure(). obj ectd ass(Car. cl ass)
. cascadeOnDel et e(true);

/] deleteAll Part2

nj ect Set cars = db. query(new Predicate() {
publ i c bool ean mat ch(Car candi date){

return true;

1)
whi | e(cars. hasNext ()) {
db. del et e(cars. next());

}
nj ect Set readouts = db. query(new Predicate() {

publ i c bool ean mat ch(Sensor Readout candi dat e) {

return true;
1)

whi | e(readout s. hasNext ()) {

db. del et e(readout s. next ());

5.4. Conclusion

Ok, collections are just objects. But why did we have to specify the concrete ArrayList type all the way?

Was that necessary? How does db4o handle inheritance? We will cover that in the next chapter.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Inheritance

5.5. Full source

package com db4o.f 1. chapter3;

i mport java.io.?*;

i mport java.util.*;

i mport com db4o. *;

i mport com db4o.f1.*;

i mport com db4o. query. *;

public class Coll ectionsExanpl e extends Uil
public static void main(String[] args) {
new File(Util.DBA4OFI LENAME). del ete();

nj ect Cont ai ner db=Db4o. openFil e(Util| . DB40OFI LENAME) ;

try {

storeFirstCar(db);

st or eSecondCar (db) ;

retri eveAl | Sensor Readout (db) ;

retri eveSensor Readout QBE(db) ;

retri eveCar QBE(db);

retrieveCol |l ecti ons(db);
retrieveArrays(db);

retrieveAl | Sensor Readout Nat i ve(db);
retri eveSensor Readout Nat i ve(db);
retrieveCar Native(db);

retri eveSensor Readout Query(db);
retri eveCar Query(db);

db. cl ose();

updat eCar Part 1() ;

db=Db4o. openFi |l e(Uti| . DB4OFI LENANME) ;
updat eCar Part 2(db) ;

updat eCol | ecti on(db);

db. cl ose();

del eteAl |l Part 1();

db=Db4o. openFi |l e(Uti| . DB4OFI LENANME) ;
del et eAl | Part 2(db);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. set(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMV);
car2.setPil ot (pilot?2);
car 2. snapshot () ;
car 2. snapshot () ;

db. set (car2);

public static void retrieveAl |l Sensor Readout (
oj ect Cont ai ner db) {
Sensor Readout prot o=new Sensor Readout (nul |, null, null);
nj ect Set resul t s=db. get (proto);

listResult(results);

public static void retrieveAl |l Sensor Readout Nati ve(
oj ect Cont ai ner db) {
nj ect Set results = db. query(new Predicate() {
publ i c bool ean mat ch(Sensor Readout candi dat e) {

return true;

1)

listResult(results);

public static void retrieveSensor Readout QBE(
oj ect Cont ai ner db) {

Sensor Readout prot o=new Sensor Readout (

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

new doubl e[]1{0.3,0.1},null,null);
nj ect Set resul t s=db. get (proto);

listResult(results);

public static void retrieveSensor Readout Nati ve(
oj ect Cont ai ner db) {
nj ect Set results = db. query(new Predicate() {
publ i c bool ean mat ch(Sensor Readout candi dat e) {

return Arrays. bi narySear ch(candi dat e. get Val ues(),

0.3) >=0
&& Arrays. bi narySear ch(candi dat e. get Val ues(),
1.0) >= 0;
}
1)

listResult(results);

public static void retrieveCar QBE(Obj ect Cont ai ner db) {
Sensor Readout pr ot or eadout =new Sensor Readout (
new doubl e[]1{0.6,0.2},null,null);
Li st protohi story=new Arraylist();
pr ot ohi st ory. add(pr ot or eadout) ;
Car protocar=new Car(null, protohistory);
nj ect Set resul t =db. get (protocar);

listResult(result);

public static void retrieveCarNative(
oj ect Cont ai ner db) {
nj ect Set results = db. query(new Predicate() {
publ i c bool ean match(Car candi date){
Li st history = candi date. getHi story();
for(int i =0; i < history.size(); i++){
Sensor Readout readout =
(Sensor Readout) hi story. get (i);
i f(Arrays. bi narySearch(readout. getVal ues(), 0.6)
>= 0 ||
Arrays. bi narySear ch(readout . get Val ues(), 0.2) >=
0)

return true;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

}

return false;

1)

listResult(results);

public static void retrieveCollections(Object Contai ner db) {
nj ect Set resul t =db. get (new ArrayList());

listResult(result);

public static void retrieveArrays(Object Contai ner db) {
nj ect Set resul t =db. get (new doubl e[]{0.6,0.4});

listResult(result);

public static void retrieveSensor Readout Query(
oj ect Cont ai ner db) {

Query query=db. query();
guery. constrai n(Sensor Readout . cl ass) ;
Query val uequery=query. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));
val uequery. constrai n(new Doubl e(0.1));
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveCarQuery(Obj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Car.cl ass);
Query historyquery=query. descend("hi story");
hi st oryquery. constrai n(Sensor Readout . cl ass);
Query val uequer y=hi st oryquery. descend("val ues");
val uequery. constrai n(new Doubl e(0. 3));
val uequery. constrai n(new Doubl e(0.1));
nj ect Set resul t =query. execute();

listResult(result);

public static void updateCarPart1() {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Db4o. configure(). objectC ass(Car. cl ass).cascadeOnUpdat e(true); }
public static void updateCarPart2(Obj ect Cont ai ner db) {
nj ect Set results = db. query(new Predicate() {
publ i c bool ean mat ch(Car candi date){

return true;

1)

Car car=(Car)results.next();

car. snapshot () ;

db. set (car);
retrieveAl | Sensor Readout Nati ve(db);

public static void updateCollection(ObjectContainer db) {
nj ect Set results = db. query(new Predicate() {
publ i c bool ean mat ch(Car candi date){

return true;

1)

Car car =(Car)results.next();

car.getHi story().renmove(0);

db. set (car.getHistory());

results = db. query(new Predicate() {
publ i c bool ean mat ch(Car candi date){

return true;

1)
whil e(results. hasNext()) {
car=(Car)resul ts. next();
for (int idx=0;idx<car.getH story().size();idx++) {
Systemout. println(car.getH story().get(idx));

public static void deleteAllPart1() {
Db4o. configure(). obj ectd ass(Car. cl ass)
. cascadeOnbDel et e(true);

public static void del eteAll Part 2(Obj ect Cont ai ner db) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set cars = db. query(new Predicate() {
publ i c bool ean mat ch(Car candi date){

return true;

1)

whi | e(cars. hasNext ()) {
db. del ete(cars. next());

}

nj ect Set readouts = db. query(new Predicate() {
publ i c bool ean mat ch(Sensor Readout candi dat e) {

return true;

1)
whi | e(readouts. hasNext ()) {

db. del et e(r eadout s. next ());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

6. Inheritance

So far we have always been working with the concrete (i.e. most specific type of an object. What about

subclassing and interfaces?

To explore this, we will differentiate between different kinds of sensors.

package com db4o. f 1. chapt er4;

i mport java.util.?*;

public class Sensor Readout {
private Date tine;
private Car car;

private String description;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;

thi s. descri pti on=descri pti on;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public String getDescription() {

return description;

}
public String toString() {

return car+" : "+time+" : "+description;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

package com db4o. f 1. chapt er 4;

i mport java.util.*;

public class TenperatureSensor Readout extends SensorReadout {

private doubl e tenperature;

publ i c Tenper at ur eSensor Readout (

Date tine, Car car,

String description, double tenperature) ({

super (time, car, description);

t hi s. t emper at ur e=t enper at ur e;

public doubl e get Temperature() {

return tenperature;

public String toString() {

return super.toString()+" tenp : "+temnperature;

package com db4o. f 1. chapt er4;

i mport java.util.?*;

public class PressureSensor Readout extends SensorReadout {

private doubl e pressure;

publ i c PressureSensor Readout (

Date tine, Car car,

String description, double pressure) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

super (time, car, description);

t hi s. pressure=pressure;

public doubl e getPressure() {

return pressure,

public String toString() {

return super.toString()+" pressure : "+pressure;

Our car's snapshot mechanism is changed accordingly.

package com db4o. f 1. chapt er 4;

i mport java.util.*;

public class Car {
private String nodel;
private Pilot pilot;

private List history;

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

t hi s. hi story=new ArraylList();

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public String getMdel () {

return nodel ;

public SensorReadout[] getHi story() {
return (Sensor Readout[])hi story.toArray(new

Sensor Readout [hi story. size()]);

}

public void snapshot () {
hi st ory. add(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
hi st ory. add(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
hi st ory. add(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*hi story.size();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*history.size();

prot ected double poll G| Pressure() {

return 0.3*history.size();

public String toString() {

return nodel +"["+pil ot +"]/"+hi story. si ze();

6.1. Storing

Our setup code has not changed at all, just the internal workings of a snapshot.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/! storeFirstCar

Car carl=new Car("Ferrari");

Pilot pilotl=new Pilot("Mchael Schumacher", 100);
carl.setPilot(pilotl);

db. set (carl);

/! storeSecondCar

Pi |l ot pilot2=new Pilot("Rubens Barrichello", 99);
Car car2=new Car ("BWV);

car2.setPilot(pilot2);

car 2. snapshot () ;

car 2. snapshot () ;

db. set (car2);

6.2. Retrieving
db4o will provide us with all objects of the given type. To collect all instances of a given class, no

matter whether they are subclass members or direct instances, we just provide a corresponding

prototype.

/1 retrieveTenperat ur eReadout sQBE

Sensor Readout prot o=

new Tenper at ur eSensor Readout (nul |, nul |, nul |, 0.0);
bj ect Set resul t =db. get (proto);
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/'l retrieveAl | Sensor Readout sQBE

Sensor Readout prot o=new Sensor Readout (nul |, nul |, null);
bj ect Set resul t =db. get (proto);
listResult(result);

This is one more situation where QBE might not be applicable: What if the given type is an interface or

an abstract class? Well, there's a little trick to keep in mind: Class objects receive special handling with
QBE.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/1 retrieveAl | Sensor Readout sQBEAl t ernati ve

bj ect Set resul t =db. get (Sensor Readout . cl ass) ;
listResult(result);

And of course there's our SODA API:

/] retrieveAl |l Sensor Readout sQuery

Query query=db. query();

guery. constrai n(Sensor Readout . cl ass) ;
bj ect Set resul t =query. execut e();
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

6.3. Updating and deleting

is just the same for all objects, no matter where they are situated in the inheritance tree.

Just like we retrieved all objects from the database above, we can delete all stored objects to prepare
for the next chapter.

/1 del eteAll
bj ect Set resul t =db. get (new Obj ect());

whi |l e(resul t.hasNext()) {
db. del ete(result.next());

6.4. Conclusion
Now we have covered all basic OO features and the way they are handled by db4o. We will complete
the first part of our db4o walkthrough in the next chapter by looking at deep object graphs, including

recursive structures.

6.5. Full source

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Deep

package com db4o. f 1. chapt er 4;

i mport java.io.?*;

i mport java.util.Arrays;

i mport com db4o. *;
i mport com db4o.f1.*;
i mport com db4o. query. *;

public class InheritanceExanple extends Uil ({
public static void main(String[] args) {
new File(Util.DBA4COFI LENAME). del ete();
nj ect Cont ai ner db=Db4o. openFil e(Uti| . DB4OFI LENAME) ;
try {
storeFirstCar(db);
st or eSecondCar (db) ;
retri eveTenper at ur eReadout sQBE(db) ;
retrieveAl | Sensor Readout sQBE(db) ;
retrieveAl | Sensor Readout sSQBEAl t er nati ve(db);
retrieveAl | Sensor Readout sQuery(db);
retrieveAl | Obj ect sQBE(db);
}
finally {
db. cl ose();

public static void storeFirstCar(ObjectContainer db) {
Car carl=new Car("Ferrari");
Pilot pilotl=new Pilot("M chael Schumacher", 100);
carl.setPilot(pilotl);
db. set(carl);

public static void storeSecondCar (Obj ect Cont ai ner db) {
Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMV);
car2.setPil ot (pilot?2);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

car 2. snapshot () ;
car 2. snapshot () ;

db. set (car2);

public static void retrieveAl |l Sensor Readout s QBE(
oj ect Cont ai ner db) {
Sensor Readout prot o=new Sensor Readout (nul |, nul |, nul |')
nj ect Set resul t =db. get (proto);

listResult(result);

public static void retrieveTenperat ur eReadout sQBE(
oj ect Cont ai ner db) {
Sensor Readout proto=
new Tenper at ur eSensor Readout (nul |, nul |, nul I, 0. 0);
nj ect Set resul t =db. get (proto);

listResult(result);

public static void retrieveAl |l Sensor Readout SQBEAI t er nati ve(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (Sensor Readout . cl ass) ;

listResult(result);

public static void retrieveAl |l Sensor Readout sQuer y(
oj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Sensor Readout . cl ass) ;
nj ect Set resul t =query. execute();

listResult(result);

public static void retrieveAl |l Cbj ect sSQBE(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Obj ect ());

listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

7. Deep graphs

We have already seen how db4o handles object associations, but our running example is still quite flat
and simple, compared to real-world domain models. In particular we haven't seen how db4o behaves
in the presence of recursive structures. We will emulate such a structure by replacing our history list

with a linked list implicitely provided by the SensorReadout class.

package com db4o.f 1. chapter5;

i mport java.util.?*;

public class Sensor Readout {
private Date tine;
private Car car;
private String description;

private Sensor Readout next;

prot ect ed Sensor Readout (Date tine, Car car, String description) {
this.time=tine;
t hi s. car =car;
thi s. descri pti on=descri pti on;

t hi s. next=nul | ;

public Car getCar() {

return car;

public Date getTinme() {

return tine;

public String getDescription() {

return description;

publ i c Sensor Readout getNext () {

return next;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public void append(Sensor Readout readout) ({
i f(next==null) {

next =r eadout ;

}
el se {

next . append(readout);
}

public int countEl ements() {

return (next==null ? 1 : next.countEl ements()+1);

public String toString() {

return car+" : "+time+" : "+description;

Our car only maintains an association to a 'head' sensor readout now.

package com db4o. f 1. chapterb5;

i mport java.util.*;

public class Car {
private String nodel;
private Pilot pilot;

private Sensor Readout history;

public Car(String nodel) {
t hi s. nodel =nodel ;
this.pilot=null;

t hi s. hi story=null;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public Pilot getPilot() {

return pilot;

public void setPilot(Pilot pilot) {
this.pilot=pilot;

public String getMdel () {

return nodel ;

publ i c Sensor Readout getHi story() ({

return history;

public void snapshot () {
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"oil",poll Q| Tenperature()));
appendToH st ory(new Tenper at ur eSensor Readout (
new Date(),this,"water", pol | Wat er Tenperature()));
appendToH st ory(new PressureSensor Readout (

new Date(),this,"oil",poll Gl Pressure()));

prot ected double poll G| Tenperature() {

return 0.1*count Hi st oryEl enent s();

prot ect ed doubl e pol | Wat er Tenperature() {

return 0.2*count Hi storyEl enents();

prot ected double poll G| Pressure() {

return 0. 3*count Hi storyEl enent s();

public String toString() {

return nodel +"["+pil ot +"] /" +count Hi st oryEl ement s() ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

private int countHi storyEl ements() {

return (history==null ? 0 : history.countEl enents());

private void appendToH st ory(Sensor Readout readout) ({
i f(history==null) {
hi st ory=r eadout ;

}

el se {

hi st ory. append(readout);

7.1. Storing and updating

No surprises here.

/] storeCar
Pil ot pilot=new Pil ot ("Rubens Barrichello", 99);
Car car=new Car ("BMN);

car.setPilot(pilot);
db. set (car);

Now we would like to build a sensor readout chain. We already know about the update depth trap, so
we configure this first.

/] set CascadeOnUpdat e

Db4o. configure(). objectC ass(Car. cl ass).cascadeOnUpdat e(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Let's collect a few sensor readouts.

/| takeManySnapshot s

bj ect Set resul t =db. get (Car. cl ass);
Car car=(Car)result.next();

for(int i=0;i<5;i++) {

car. snapshot () ;

}
db. set (car);

7.2. Retrieving

Now that we have a sufficiently deep structure, we'll retrieve it from the database and traverse it.

First let's verify that we indeed have taken lots of snapshots.

/1 retrieveAll Snapshots

bj ect Set resul t =db. get (Sensor Readout . cl ass) ;
whi l e(result. hasNext()) {

Systemout.println(result.next());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

All these readouts belong to one linked list, so we should be able to access them all by just traversing

our list structure.

/] retrieveSnapshot sSequentially

bj ect Set resul t =db. get (Car. cl ass);
Car car=(Car)result.next();
Sensor Readout readout =car. get Hi story();
whi | e(readout! =nul ') {
System out. println(readout);

r eadout =r eadout . get Next () ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Ouch! What's happening here?

7.2.1. Activation depth

Deja vu - this is just the other side of the update depth issue.

db4o cannot track when you are traversing references from objects retrieved from the database. So it
would always have to return 'complete' object graphs on retrieval - in the worst case this would boil
down to pulling the whole database content into memory for a single query.

This is absolutely undesirable in most situations, so db4o provides a mechanism to give the client fine-
grained control over how much he wants to pull out of the database when asking for an object. This
mechanism is called activation depthand works quite similar to our familiar update depth.

The default activation depth for any object is 5, so our example above runs into nulls after traversing 5
references.

We can dynamically ask objects to activate their member references. This allows us to retrieve each
single sensor readout in the list from the database just as needed.

/] retrieveSnapshot sSequenti al |l yl nproved

bj ect Set resul t =db. get (Car. cl ass);

Car car=(Car)result.next();

Sensor Readout readout =car. get Hi story();
whi | e(readout! =nul ') {

db. activat e(readout, 1);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

System out. println(readout);

r eadout =r eadout . get Next () ;

Note that 'cut' references may also influence the behavior of your objects: In this case the length of

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

the list is calculated dynamically, and therefor constrained by activation depth.

Instead of dynamically activating subgraph elements, you can configure activation depth statically, too.
We can tell our SensorReadout class objects to cascade activation automatically, for example.

/] setActivationDepth

Db4o. confi gure() . obj ect d ass(Tenper at ur eSensor Readout . cl ass)

.cascadeOnActi vate(true);

/] retrieveSnapshot sSequentially

bj ect Set resul t =db. get (Car. cl ass);

Car car=(Car)result.next();

Sensor Readout readout =car. get Hi story();
whi | e(readout! =nul ') {

System out. println(readout);

r eadout =r eadout . get Next () ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

You have to be very careful, though. Activation issues are tricky. Db4o provides a wide range of
configuration features to control activation depth at a very fine-grained level. You'll find those triggers
in com.db4o.config.Configuration and the associated ObjectClass and ObjectField classes.

Don't forget to clean up the database.

/1 del eteAll
bj ect Set resul t =db. get (new Obj ect());

whi |l e(resul t.hasNext()) {
db. del ete(result.next());

7.3. Conclusion
Now we should have the tools at hand to work with arbitrarily complex object graphs. But so far we

have only been working forward, hoping that the changes we apply to our precious data pool are
correct. What if we have to roll back to a previous state due to some failure? In the next chapter we

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Transactions

will introduce the db4o transaction concept.

7.4. Full source

package com db4o. f 1. chapter5;

i mport java.io.?*;
i mport com db4o. *;
i mport com db4o.f1.*;

public class DeepExanpl e extends Uti l

{

public static void main(String[] args) {
new File(Util.DBA4OFI LENAME). del ete();

nj ect Cont ai ner db=Db4o. openFile(Util.

try {

DB4CFI LENAME) ;

}

storeCar (db);

db. cl ose();

set CascadeOnUpdat e() ;

db=Db4o. openFi |l e(Uti| . DB4OFI LENANME) ;
t akeManySnapshot s(db) ;

db. cl ose();

db=Db4o. openFi |l e(Uti| . DB4OFI LENAME) ;
retrieveAl | Snapshot s(db);

db. cl ose();

db=Db4o. openFi |l e(Uti| . DB4OFI LENAME) ;
retri eveSnapshot sSequenti al | y(db);
retri eveSnapshot sSequenti al | yl npr oved(db);
db. cl ose();

set Acti vati onDept h() ;

db=Db4o. openFi |l e(Uti| . DB4OFI LENANME) ;
retri eveSnapshot sSequenti al | y(db);

finally {

db. cl ose();

public static void storeCar(ObjectContainer db) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);

car.setPilot(pilot);

db. set (car);

public static void set CascadeOnUpdate() {
Db4o. configure(). objectC ass(Car.cl ass).cascadeOnUpdat e(true); }

public static void takeManySnapshot s(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (Car. cl ass);
Car car=(Car)result.next();
for(int i=0;i<5;i++) {
car. snapshot () ;

}
db. set (car);

public static void retrieveAl |l Shapshot s(Cbj ect Cont ai ner db) {
nj ect Set resul t =db. get (Sensor Readout . cl ass) ;
whil e(result. hasNext()) {

Systemout.println(result.next());

public static void retrieveSnapshot sSequenti al | y(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (Car. cl ass);
Car car=(Car)result.next();
Sensor Readout readout =car.get H story();
whi | e(readout!=null) {
System out . printl n(readout);

r eadout =r eadout . get Next () ;

public static void retrieveSnapshot sSequenti al |yl nproved(
oj ect Cont ai ner db) {
nj ect Set resul t =db. get (Car. cl ass);
Car car=(Car)result.next();

Sensor Readout readout =car.get H story();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

whi | e(readout!=null) {
db. acti vate(readout, 1);
System out . printl n(readout);

r eadout =r eadout . get Next () ;

public static void setActivati onDepth() {
Db4o. configure(). obj ect d ass(Tenper at ur eSensor Readout . cl ass)

. cascadeOnActi vat e(true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

8. Transactions

Probably you have already wondered how db4o handles concurrent access to a single database. Just as
any other DBMS, db4o provides a transaction mechanism. Before we take a look at multiple, perhaps
even remote, clients accessing a db4o instance in parallel, we will introduce db4o transaction concepts
in isolation.

8.1. Commit and rollback

You may not have noticed it, but we have already been working with transactions from the first chapter
on. By definition, you are always working inside a transaction when interacting with db4o. A
transaction is implicitly started when you open a container, and the current transaction is implicitly
committed when you close it again. So the following code snippet to store a car is semantically

identical to the ones we have seen before; it just makes the commit explicit.

/! storeCar Comm t

Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);

car.setPilot(pilot);

db. set (car);

db. commit () ;

/'l 1TistAlCars

bj ect Set resul t =db. get (Car. cl ass);
listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

However, we can also rollback the current transaction, resetting the state of our database to the last
commit point.

/1 storeCarRol | back

Pil ot pilot=new Pilot("Mchael Schumacher", 100);
Car car=new Car("Ferrari");

car.setPilot(pilot);

db. set (car);

db. rol I back();

/'l 1TistAlCars

bj ect Set resul t =db. get (Car. cl ass);
listResult(result);

8.2. Refresh live objects

There's one problem, though: We can roll back our database, but this cannot automagically trigger a
rollback for our live objects.

/| car Snapshot Rol | back

Obj ect Set resul t =db. get (new Car ("BMN)) ;
Car car=(Car)result.next();

car. snapshot () ;

db. set (car);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

db. rol I back();

Systemout.println(car);

We will have to explicitly refresh our live objects when we suspect they may have participated in a
rollback transaction.

/1 car Snapshot Rol | backRefresh

Obj ect Set resul t =db. get (new Car ("BMN)) ;
Car car=(Car)result.next();

car. snapshot () ;

db. set (car);

db. rol I back();

db. ext (). refresh(car, I nteger. MVAX_VALUE) ;

Systemout.println(car);

What is this ExtObjectContainer construct good for? Well, it provides some functionality that is in itself
stable, but the API may still be subject to change. As soon as we are confident that no more changes
will occur, ext functionality will be transferred to the common ObjectContainer API.

Finally, we clean up again.

/1 del eteAll

bj ect Set resul t =db. get (new Obj ect());

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

whil e(result. hasNext ()) {
db. del ete(result. next());

8.3. Conclusion

We have seen how transactions work for a single client. In the next chapter we will see how the
transaction concept extends to multiple clients, whether they are located within the same VM or on a

remote machine.

8.4. Full source

package com db4o.f 1. chapterb5;

i mport java.io.?*;
i mport com db4o. *;
i mport com db4o.f1.*;

public class Transacti onExanpl e extends Uil {
public static void main(String[] args) {
new File(Util.DBA4OFI LENAME). del ete();
nj ect Cont ai ner db=Db4o. openFil e(Util| . DB40OFI LENAME) ;
try {
st oreCar Commi t (db) ;
db. cl ose();
db=Db4o. openFi |l e(Uti| . DB4OFI LENANME) ;
[istAll Cars(db);
st or eCar Rol | back(db);
db. cl ose();
db=Db4o. openFi |l e(Uti| . DB4OFI LENANME) ;
[istAll Cars(db);
car Snapshot Rol | back(db) ;
car Snapshot Rol | backRef resh(db);
}
finally {
db. cl ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#ClientServer

public static void storeCarCommt(Object Container db) {
Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);
car.setPilot(pilot);
db. set (car);
db. commit ();

public static void |istAll Cars(ObjectContainer db) {
nj ect Set resul t =db. get (Car. cl ass);

listResult(result);

public static void storeCarRol | back(Obj ect Cont ai ner db) {
Pilot pilot=new Pilot("M chael Schumacher", 100);
Car car=new Car("Ferrari");
car.setPilot(pilot);
db. set (car);
db. rol | back();

public static void car Shapshot Rol | back(Obj ect Cont ai ner db) {
nj ect Set resul t =db. get (new Car ("BMV)) ;
Car car=(Car)result.next();
car. snapshot () ;
db. set (car);
db. rol | back();

System out. println(car);

public static void car Snapshot Rol | backRef r esh(Obj ect Cont ai ner db)

nj ect Set resul t =db. get (new Car ("BMV)) ;
Car car=(Car)result.next();

car. snapshot () ;

db. set (car);

db. rol | back();

db. ext (). refresh(car, | nt eger. MAX_VALUE)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

System out. println(car);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

9. Client/Server

Now that we have seen how transactions work in db4o conceptually, we are prepared to tackle

concurrently executing transactions.

We start by preparing our database in the familiar way.

!/l setFirstcCar

Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);

car.setPilot(pilot);

db. set (car);

/] set SecondCar

Pilot pilot=new Pilot("M chael Schumacher", 100);
Car car=new Car("Ferrari");

car.setPilot(pilot);

db. set (car);

9.1. Embedded server

From the API side, there's no real difference between transactions executing concurrently within the
same VM and transactions executed against a remote server. To use concurrent transactions within a
single VM, we just open a db4o server on our database file, directing it to run on port 0, thereby

declaring that no networking will take place.

/] accesslLocal Server

nj ect Server server =Db4o. openServer (Uti| . DB40OFI LENAME, 0) ;
try {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Obj ect Cont ai ner client=server.openCient();

// Do something with this client, or open nore clients
client.close();

}
finally {

server.cl ose();
}

Again, we will delegate opening and closing the server to our environment to focus on client
interactions.

/1 querylLocal Server

Obj ect Cont ai ner client=server.openCient();

listResult(client.get(new Car(null)));
client.close();

The transaction level in db4o is read committed . However, each client container maintains its own
weak reference cache of already known objects. To make all changes committed by other clients

immediately, we have to explicitly refresh known objects from the server. We will delegate this task to
a specialized version of our listResult() method.

public static void |istRefreshedResul t(Cbject Contai ner
contai ner, Cbj ect Set result,int depth) {
Systemout.println(result.size());
whil e(result. hasNext()) {
bj ect obj = result.next();

container.ext().refresh(obj, depth);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

System out . println(obj);

/! denonstrat eLocal ReadConmitted

Obj ect Cont ai ner clientl=server.openCient();
Obj ect Cont ai ner client2=server.openCient();
Pilot pilot=new Pilot("David Coulthard", 98);
Obj ect Set result=clientl.get(new Car("BWV));
Car car=(Car)result.next();
car.setPilot(pilot);

clientl.set(car);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.commt();
listResult(clientl.get(Car.class));

i st RefreshedResult(client2,client2. get(Car.class), 2);

clientl.close();

client2. close();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Simple rollbacks just work as you might expect now.

/! denonstrat eLocal Rol | back

Obj ect Cont ai ner clientl=server.openCient();
Obj ect Cont ai ner client2=server.openCient();
Obj ect Set result=clientl.get(new Car("BWV));
Car car=(Car)result.next();

car.setPil ot (new Pil ot ("Soneone el se",0));
clientl.set(car);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.roll back();
clientl.ext().refresh(car, 2);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));

clientl.close();

client2. close();

9.2. Networking

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

From here it's only a small step towards operating db4o over a TCP/IP network. We just specify a port

number greater than zero and set up one or more accounts for our client(s).

/!l accessRenot eServer

Obj ect Server server=Db4o. openServer (Uil .DB40OFI LENAVE, PORT) ;
server. grant Access(USER, PASSWORD) ;
try {
bj ect Cont ai ner
cl i ent =Db4o. opend i ent ("I ocal host", PORT, USER, PASSWORD) ;
// Do something with this client, or open nore clients

client.close();

}
finally {

server. cl ose();
}

The client connects providing host, port, user name and password.

/1 quer yRenot eSer ver

bj ect Cont ai ner
cli ent=Db4o. opend i ent ("l ocal host", port, user, password);
listResult(client.get(new Car(null)));

client.close();

Everything else is absolutely identical to the local server examples above.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/! denonstrat eRenpt eReadCommi tt ed

bj ect Cont ai ner

cl i ent 1=Db40. opend i ent ("l ocal host", port, user, password) ;
bj ect Cont ai ner

cl i ent 2=Db4o. opend i ent ("l ocal host", port, user, password) ;
Pil ot pilot=new Pilot("Jenson Button", 97);

Obj ect Set result=clientl.get(new Car(null));

Car car=(Car)result.next();

car.setPilot(pilot);

clientl.set(car);

listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.commt();

listResult(clientl.get(new Car(null)));

i st RefreshedResult(client2,client2. get(Car.class), 2);

clientl.close();

client2. close();

/! denonstr at eRenpt eRol | back

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

bj ect Cont ai ner

cl i ent 1=Db40. opend i ent ("l ocal host", port, user, password) ;
bj ect Cont ai ner

cl i ent 2=Db4o. opend i ent ("l ocal host", port, user, password) ;
Obj ect Set result=clientl.get(new Car(null));

Car car=(Car)result.next();

car.setPil ot (new Pil ot ("Soneone el se",0));
clientl.set(car);

listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));

clientl.roll back();

clientl.ext().refresh(car, 2);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));

clientl. close();

client2. close();

9.3. Native Queries in Client/Server mode

A quite subtle problem may occur if you're using Native Queries as anonymous (or just non-static)
inner classes in Client/Server mode. Anonymous/non-static inner class instances carry a synthetic field
referencing their outer class instance - this is just Java's way of implementing inner class access to

fields or final method locals of the outer class without introducing any notion of inner classes at all at

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

the bytecode level. If such a non-static inner class predicate cannot be converted to S.0.D.A. form on
the client, it will be wrapped into an evaluation and passed to the server, introducing the same
problem already mentioned in the evaluation chapter : db4o will try to transfer the evaluation, using
the standard platform serialization mechanism. If this fails, it will just try to pass it to the server via
db4o marshalling. However, this may fail, too, for example if the outer class references any local db4o

objects like ObjectContainer, etc., resulting in an ObjectNotStorableException.

So to be on the safe side with NQs in C/S mode, you should declare Predicates as top-level or static
inner classes only. Alternatively, you could either make sure that the outer classes containing Predicate
definitions could principally be persisted to db4o, too, and don't add significant overhead to the
predicate (the appropriate value for 'significant’

being your choice) or ensure during development that all predicates used actually can be optimized to
S.0.D.A. form.

9.4. Out-of-band signalling

Sometimes a client needs to send a special message to a server in order to tell the server to do
something. The server may need to be signalled to perform a defragment or it may need to be
signalled to shut itself down gracefully.

This is configured by calling setMessageRecipient() , passing the object that will process client-initiated

messages.

public void runServer(){

synchroni zed(t hi s){
nj ect Server db4oServer = Db4o.openServer (FlI LE, PORT);
db4oSer ver. gr ant Access(USER, PASS);

/1 Using the nessaging functionality to redirect all
/1 nmessages to this.processMessage

db4oServer.ext().configure().clientServer().setMessageReci pient(this)

/1 to identify the thread in a debugger
Thr ead. current Thread() . set Name(t hi s. get G ass() . get Name());

/1 W only need low priority since the db4o server has

/] it's own thread.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Evaluations

Thread. current Thread().setPriority(Thread. M N_PRI ORI TY) ;
try {
if(! stop){
/1 wait forever for notify() fromclose()
this.wait(Long. MAX VALUE) ;
}
} catch (Exception e) {
e.printStackTrace();

}

db4oServer. cl ose();

The message is received and processed by a processMessage() method:

public void processMessage(hj ect Cont ai ner con, (bject nessage) {
i f (message i nstanceof StopServer){

cl ose();

Db4o allows a client to send an arbitrary signal or message to a server by sending a plain object to the
server. The server will receive a callback message, including the object that came from the client. The

server can interpret this message however it wants.

public static void main(String[] args) {

nj ect Cont ai ner obj ect Contai ner = null;

try {

/1 connect to the server
obj ect Cont ai ner = Db4o. opend i ent (HOST, PORT, USER, PASS);

} catch (Exception e) {
e.printStackTrace();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

i f(objectContainer !'= null){

/1 get the nessageSender for the ObjectContainer
MessageSender messageSender = obj ect Cont ai ner. ext (). configure()

.clientServer().get MessageSender () ;

/1 send an instance of a StopServer object

nmessageSender . send(new St opServer());

/1 close the Object Cont ai ner

obj ect Cont ai ner. cl ose();

9.5. Putting it all together: a simple but complete db4o server

Let's put all of this information together now to implement a simple standalone db4o server with a

special client that can tell the server to shut itself down gracefully on demand.

First, both the client and the server need some shared configuration information. We will provide this

using an interface:

package com db4o. f 1. chapterb5;

/**
* Configuration used for {@ink StartServer} and { @i nk StopServer}.
*/

public interface ServerConfiguration {

| %
* the host to be used.
*
If you want to run the client server exanples on two
conput ers,

* enter the conputer nanme of the one that you want to use as

server.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

*/
public String HOST = "l ocal host";

/**

* the database file to be used by the server.
*/

public String FI LE = "formul al. db4o"

/**

* the port to be used by the server.
*/

public int PORT = 4488;

/**

* the user name for access control
*/

public String USER = "db4o";

/**

* the pasword for access control
*/

public String PASS = "db4o"

Now we'll create the server:

package com db4o. f 1. chapterb5;

i mport com db4o. *;

i mport com db4o. messagi ng. *;

/**

* starts a dbd4o server with the settings from{@ink
Server Confi guration}.

*

This is a typical setup for a |ong running server.

*

The Server may be stopped froma renote |ocation by

runni ng

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

* StopServer. The StartServer instance is used as a MessageReci pi ent
and

* reacts to receiving an instance of a StopServer object.

*

Note that all user classes need to be present on the
server

* side and that all possible Db4o.configure() calls to alter the
db4o

* configuration need to be executed on the client and on the server.
*/

public class Start Server

i mpl enents Server Confi guration, MessageReci pient {

/**
* setting the value to true denotes that the server should be
cl osed
*/

private bool ean stop = fal se

/**

* starts a db4o server using the configuration from
* {@ink ServerConfiguration}.

*/

public static void main(String[] argunents) {

new Start Server().runServer();

| **
* opens the bjectServer, and waits forever until close() is
cal | ed
* or a StopServer nmessage is being received.
*/
public void runServer(){
synchroni zed(t hi s){
nj ect Server db4oServer = Db4o.openServer (FlI LE, PORT);
db4oSer ver . gr ant Access(USER, PASS)

/1 Using the nessaging functionality to redirect al
/1 messages to this.processMessage

db4oServer.ext().configure().clientServer().setMessageReci pient(this)

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

/1 to identify the thread in a debugger
Thr ead. current Thread() . set Name(t hi s. get G ass() . get Name());

/1 W only need low priority since the db4o server has
/[l it's own thread
Thread. current Thread().setPriority(Thread. M N_PRI ORI TY) ;
try {
if(! stop){
/1 wait forever for notify() fromclose()
thi s.wait(Long. MAX_VALUE)
}
} catch (Exception e) {
e.printStackTrace();
}

db4oServer. cl ose();

| **

* messagi ng cal | back

* @Bee
com db4o. nessagi ng. MessageReci pi ent #pr ocessMessage(Obj ect Cont ai ner
nj ect)

*/

public void processMessage(hj ect Cont ai ner con, (bject nessage) {
i f (message i nstanceof StopServer){

cl ose();

| **
* closes this server.
*/
public void close(){
synchroni zed(t hi s){
stop = true;

this.notify();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

And last but not least, the client that stops the server.

package com db4o. f 1. chapter5;

i mport com db4o. *;

i mport com db4o. messagi ng. *;

| **
* stops the db4o Server started with {@ink StartServer}.
*

This is done by opening a client connection

* to the server and by sending a StopServer object as

* a nmessage. {@ink StartServer} will react init's

* processMessage net hod.

*/

public class StopServer inmplenments ServerConfiguration {

/**

* stops a db4o Server started with Start Server.
* @hrows Exception

*/

public static void main(String[] args) {

nj ect Cont ai ner obj ect Contai ner = null;

try {

/] connect to the server

obj ect Cont ai ner = Db4o. opend i ent (HOST, PORT, USER, PASS);
} catch (Exception e) {
e.printStackTrace();
i f(objectContainer !'= null){
/1 get the nessageSender for the ObjectContainer
MessageSender nmessageSender = obj ect Cont ai ner. ext (). configure()

.clientServer().get MessageSender () ;

/1 send an instance of a StopServer object

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nmessageSender . send(new St opServer());

/1 close the Object Cont ai ner

obj ect Cont ai ner. cl ose() ;

9.6. Conclusion

That's it, folks. No, of course it isn't. There's much more to db4o we haven't covered yet: schema
evolution, custom persistence for your classes, writing your own query objects, etc. A much more
thorough documentation is provided in the reference that you should have also received with the
download.

We hope that this tutorial has helped to get you started with db4o. How should you continue now?

- You could browse the remaining chapters. They are a selection of themes from the reference that

very frequently come up as questions in ourhttp://forums.db4o.com/forums/.

-(Interactive version only)While this tutorial is basically sequential in nature, try to switch back and
forth between the chapters and execute the sample snippets in arbitrary order. You will be working
with the same database throughout; sometimes you may just get stuck or even induce exceptions, but

you can always reset the database via the console window.

- The examples we've worked through are included in your db4o distribution in full source code. Feel

free to experiment with it.

- I you're stuck, see if the FAQ can solve your problem, browse the information on our web site, check

if your problem is submitted to Jira or visit our forums athttp://forums.db4o.com/forums/.

9.7. Full source

package com db4o.f 1. chapterb5;

i mport java.io.?*;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://forums.db4o.com/forums/
http://www.db4o.com/
http://tracker.db4o.com/jira/secure/Dashboard.jspa
http://forums.db4o.com/forums/

i mport
i mport

public

com db4o. *;

com db4o.f1. *;

class dientServer Exampl e extends Uil ({

private final static int PORT=0xdb40;

private final static String USER="user";

private final static String PASSWORD="password";

public static void main(String[] args) throws | OException {

new File(Util.DB4OFI LENAME) . del ete();
accesslLocal Server();
new File(Util.DB4OFI LENAME) . del ete();
nj ect Cont ai ner db=Db4o. openFi |l e(Uti| . DB4OFI LENANE)
try {
set Fi rst Car (db) ;
set SecondCar (db) ;
}
finally {
db. cl ose();
}
confi gureDb4o();
nj ect Server server =Db4o. openServer (Uti| . DB40OFI LENAME, 0) ;
try {
guerylLocal Server (server);
denonstrat eLocal ReadCommi tt ed(server);

denonstrat eLocal Rol | back(server);

}
finally {

server.cl ose();
}

accessRenot eServer () ;

server =Db40. openServer (Ui | . DB4AOFI LENANVE, PORT) ;

server. grant Access(USER, PASSVWORD) ;

try {
guer yRenot eSer ver (PORT, USER, PASSWORD) ;
denonst r at eRenot eReadConmi t t ed(PORT, USER, PASSWORD) ;
denonst r at eRenot eRol | back(PORT, USER, PASSWORD) ;

}

finally {

server.cl ose();

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

public static void setFirstCar(ObjectContainer db) {
Pil ot pilot=new Pilot("Rubens Barrichello", 99);
Car car=new Car ("BMN);
car.setPilot(pilot);
db. set (car);

public static void set SecondCar ((bj ect Cont ai ner db) {
Pilot pilot=new Pilot("M chael Schumacher", 100);
Car car=new Car("Ferrari");
car.setPilot(pilot);
db. set (car);

public static void accessLocal Server() {
nj ect Server server =Db4o. openServer (Ut il . DB40OFI LENAME, 0) ;
try {
nj ect Cont ai ner client=server.openCient();
/1 Do sonething with this client, or open nore clients

client.close();

}
finally {

server.cl ose();
}

public static void querylLocal Server (Obj ect Server server) {
nj ect Cont ai ner client=server.openCient();
listResult(client.get(new Car(null)));

client.close();

public static void configureDbdo() {
Db4o. configure(). objectd ass(Car. cl ass) . updat eDept h(3);

public static void denpnstratelocal ReadConmi tted(Obj ect Server

server) {

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Cont ai ner clientl=server.opendient();
nj ect Cont ai ner client2=server.opendient();
Pil ot pilot=new Pilot("David Coul thard", 98);
nj ect Set result=clientl. get(new Car("BMN\));
Car car=(Car)result.next();
car.setPilot(pilot);

clientl.set(car);

listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.commit();
listResult(clientl.get(Car.class));

i st RefreshedResult (client2,client2.get(Car.class), 2);
clientl.close();

client2. close();

public static void denpnstratelocal Rol | back(Obj ect Server server)

nj ect Cont ai ner clientl=server.opendient();
nj ect Cont ai ner client2=server.opendient();
nj ect Set result=clientl. get(new Car("BMN\));
Car car=(Car)result.next();

car.setPil ot (new Pil ot ("Someone el se",0));
clientl.set(car);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.rollback();
clientl.ext().refresh(car, 2);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.close();

client2.close();

public static void accessRenoteServer() throws | COException {
nj ect Server server =Db4o. openServer (Uil . DB4OFI LENAVE, PORT) ;
server. grant Access(USER, PASSVWORD) ;
try {
nj ect Cont ai ner
cl i ent =Db4o. opend i ent ("I ocal host", PORT, USER, PASSVWORD) ;

/1 Do sonething with this client, or open nore clients

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

client.close();

}
finally {

server.cl ose();
}

public static void queryRenoteServer(int port, String user, String
password) throws | OException {
nj ect Cont ai ner
cl i ent =Db4o. openC i ent ("I ocal host", port, user, password) ;
listResult(client.get(new Car(null)));

client.close();

public static void denpnstrat eRenpot eReadCommitted(int port, String
user, String password) throws | COException {
nj ect Cont ai ner
cl i ent 1=Db4o. openC ient ("l ocal host", port, user, password);
nj ect Cont ai ner
cl i ent 2=Db4o. openC i ent ("l ocal host", port, user, password);
Pil ot pilot=new Pilot("Jenson Button", 97);
nj ect Set result=clientl.get(new Car(null));
Car car=(Car)result.next();
car.setPilot(pilot);
clientl.set(car);
listResult(clientl.get(new Car(null)));
listResult(client2.get(new Car(null)));
clientl.commit();
listResult(clientl.get(new Car(null)));
i st RefreshedResult (client2,client2.get(Car.class), 2);
clientl.close();

client2.close();

public static void denpnstrat eRenpt eRol | back(int port, String
user, String password) throws | COException {
nj ect Cont ai ner
cl i ent 1=Db4o. openC ient ("l ocal host", port, user, password);
nj ect Cont ai ner

cl i ent 2=Db4o. openC i ent ("l ocal host", port, user, password);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

nj ect Set result=clientl.get(new Car(null));

Car car=(Car)result.next();
car.setPil ot (new Pil ot (" Someone el se",
clientl.set(car);
listResult(clientl.get(new Car(null)))
listResult(client2.get(new Car(null)))
clientl.rollback();
clientl.ext().refresh(car, 2);
listResult(clientl.get(new Car(null)))
listResult(client2.get(new Car(null)))
clientl.close();

client2. close();

0));

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

10. SODA Evaluations

In the SODA API chapter we already mentioned Evaluations as a means of providing user-defined
custom constraints and as a means to run any arbitrary code in a SODA query. Let's have a closer
look.

10.1. Evaluation API

The evaluation API consists of two interfaces, Evaluation and Candidate . Evaluation implementations

are implemented by the user and injected into a query. During a query, they will be called from db4o
with a candidate instance in order to decide whether to include it into the current (sub-)result.

The Evaluation interface contains a single method only:

public void eval uat e(Candi dat e candi date);

This will be called by db4o to check whether the object encapsulated by this candidate should be

included into the current candidate set.

The Candidate interface provides three methods:

public Object getCbject();
public void include(bool ean fl ag);

publ i c Obj ect Cont ai ner obj ect Cont ai ner () ;

An Evaluation implementation may call getObject() to retrieve the actual object instance to be
evaluated, it may call include() to instruct db4o whether or not to include this object in the current

candidate set, and finally it may access the current database directly by calling objectContainer().

10.2. Example

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#SODAQueryAPI

For a simple example, let's go back to our Pilot/Car implementation from the Collections chapter. Back
then, we kept a history of SensorReadout instances in a List member inside the car. Now imagine that
we wanted to retrieve all cars that have assembled an even number of history entries. A quite
contrived and seemingly trivial example, however, it gets us into trouble: Collections are transparent to

the query API, it just 'looks through' them at their respective members.

So how can we get this done? Let's implement an Evaluation that expects the objects passed in to be

instances of type Car and checks their history size.

package com db4o. f 1. chapt er 6;

i mport com db4o. f1. chapter3.*;
i mport com db4o. query. *;

public class EvenHi storyEval uation inplements Eval uation {
public void eval uat e(Candi dat e candi date) ({
Car car=(Car)candi date. get Ovj ect();
candi dat e. i ncl ude(car.getH story().size() %2 == 0);

To test it, let's add two cars with history sizes of one, respectively two:

|/l storeCars

Pilot pilotl=new Pilot("M chael Schumacher", 100);
Car carl=new Car("Ferrari");
carl.setPilot(pilotl);
car 1. snapshot () ;
db. set(carl);

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BMV);
car2.setPil ot (pilot?2);

car 2. snapshot () ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Collections

car 2. snapshot () ;
db. set (car2);

and run our evaluation against them:

/1 queryWthEval uation

Query query=db. query();
guery. constrain(Car.cl ass);

qguery. constrai n(new EvenHi st oryEval uation());

bj ect Set resul t =query. execut e();
Util.listResult(result);

10.3. Drawbacks

While evaluations offer you another degree of freedom for assembling queries, they come at a certain
cost: As you may already have noticed from the example, evaluations work on the fully instantiated
objects, while 'normal' queries peek into the database file directly. So there's a certain performance
penalty for the object instantiation, which is wasted if the object is not included into the candidate set.

Another restriction is that, while 'normal' queries can bypass encapsulation and access candidates'
private members directly, evaluations are bound to use their external API, just as in the language
itself.

One last hint: Evaluations are expected to be serializable for client/server operation. So be careful
when implementing them as (anonymous) inner classes and keep in mind that those will carry an

implicit reference to their surrounding class and everything that belongs to it. Best practice is to always

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

implement evaluations as normal top level or static inner classes.

10.4. Conclusion

With the introduction of evaluations we finally completed our query toolbox. Evaluations provide a

simple way of assemble arbitrary custom query building blocks, however, they come at a price.

10.5. Full source

package com db4o. f 1. chapt er 6;

i mport java.io.?*;

i mport com db4o. *;

i mport com db4o.f1.*;

i mport com db4o. f1. chapter3.*;
i mport com db4o. query. *;

public class Eval uati onExanpl e extends Util {
public static void main(String[] args) {
new File(Util.DBA4OFI LENAME) . del ete();
nj ect Cont ai ner db=Db4o. openFil e(Uti| . DB4OFI LENANME) ;
try {
storeCars(db);
qguer yWt hEval uati on(db);

}

finally {
db. cl ose();

}

public static void storeCars(Object Container db) {
Pilot pilotl=new Pilot ("M chael Schumacher", 100);
Car carl=new Car("Ferrari");
carl.setPilot(pilotl);
car 1. snapshot () ;

db. set(carl);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Pil ot pilot2=new Pil ot ("Rubens Barrichello", 99);
Car car2=new Car ("BWV);

car2.setPil ot (pilot?2);

car 2. snapshot () ;

car 2. snapshot () ;

db. set (car2);

public static void queryWthEval uati on(Obj ect Cont ai ner db) {
Query query=db. query();
guery. constrai n(Car.cl ass);
guery. constrai n(new EvenHi st oryEval uati on());
nj ect Set resul t =query. execute();

Uil.listResult(result);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

11. Configuration

db4o provides a wide range of configuration methods to request special behaviour. For a complete list

of all available methods see the API documentation for the com.db4o.config package.

Some hints around using configuration calls:

11.1. Scope
Configuration calls can be issued to a global VM-wide configuration context with

Db4o. confi gure()

and to an open ObjectContainer/ObjectServer with

obj ect Cont ai ner. ext (). confi gure()

obj ect Server. ext (). configure()

When an ObjectContainer/ObjectServer is opened, the global configuration context is cloned and
copied into the newly opened ObjectContainer/ObjectServer. Subsequent calls against the global

context with Db4o.configure() have no effect on open ObjectContainers/ObjectServers.

11.2. Calling Methods
Many configuration methods have to be called before an ObjectContainer/ObjectServer is opened and

will be ignored if they are called against open ObjectContainers/ObjectServers. Some examples:

Configuration conf = Db4o.configure();
conf . obj ect Cl ass(Foo. cl ass). obj ect Fi el d("bar").indexed(true);
conf . obj ect O ass(Foo. cl ass) . cascadeOnUpdat e() ;
conf . obj ect d ass(Foo. cl ass) . cascadeOnDel et e() ;
conf . obj ect Cl ass(typeof (System Draw ng. | mage))
.transl ate(new TSeri alizable());
conf . gener at eUUl Ds(| nt eger. MAX_VALUE) ;
conf . gener at eVer si onNunber s(I nt eger. MAX_VALUE) ;
conf . aut omat i cShut Down(f al se) ;
conf .| ockDat abaseFi | e(fal se);

conf. singl eThreadedd i ent (true);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

conf . weakRef er ences(fal se);

Configurations that influence the database file format will have to take place, before a database is

created, before the first #openXXX() call. Some examples:

Configuration conf = Db4o.configure();
conf. bl ockSi ze(8) ;

conf . uni code(f al se);

Configuration settings are not stored in db4o database files. Accordingly all configuration methods have
to be called every time before an ObjectContainer/ObjectServer is opened. For using db4o in
client/server mode it is recommended to use the same global configuration on the server and on the
client. To set this up nicely it makes sense to create one application class with one method that does

all the db4o configuration and to deploy this class both to the server and to all clients.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

12. Indexes
db4o allows to index fields to provide maximum querying performance. To request an index to be

created, you would issue the following API method call in your global db4o configuration method

before you open an ObjectContainer/ObjectServer:

/1 assum ng
cl ass Foo{

String bar;

Db4o. configure(). obj ectd ass(Foo. cl ass).objectField("bar").indexed(tr

ue) ;

If the configuration is set in this way, an index on the Foo#bar field will be created (if not present
already) the next time you open an
ObjectContainer/ObjectServer and you use the Foo class the first time

in your application.

Contrary to all other configuration calls indexes - once created - will remain in a database even if the

index configuration call is not issued before opening an ObjectContainer/ObjectServer.

To drop an index you would also issue a configuration call in your db4o configuration method:

Db4o. configure(). objectd ass(Foo. cl ass) . objectField("bar").indexed(fa

I se);

Actually dropping the index will take place the next time the respective class is used.

db4o will tell you when it creates and drops indexes, if you choose a message level of 1 or higher:

Db4o. configure(). messagelLevel (1);

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Configuration
#Configuration

For creating and dropping indexes on large amounts of objects there are two possible strategies:
(1) Import all objects with indexing off, configure the index and reopen the
ObjectContainer/ObjectServer.

(2) Import all objects with indexing turned on and commit regularly for a fixed amount of objects
(~10,000).

(1) will be faster.

(2) will keep memory consumption lower.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

13. IDs

The db4o team recommends, not to use object IDs where this is not necessary. db4o keeps track of
object identities in a transparent way, by identifying "known" objects on updates. The reference
system also makes sure that every persistent object is instantiated only once, when a graph of objects
is retrieved from the database, no matter which access path is chosen. If an object is accessed by
multiple queries or by multiple navigation access paths, db4o will always return the one single object,
helping you to put your object graph together exactly the same way as it was when it was stored,
without having to use IDs.

The use of IDs does make sense when object and database are disconnected, for instance in stateless
applications.

db4o provides two types of ID systems.
13.1. Internal IDs
The internal db4o ID is a physical pointer into the database with only one indirection in the file to the

actual object so it is the fastest external access to an object db4o provides. The internal ID of an object

is available with

obj ect Cont ai ner. ext (). getl D(obj ect);

To get an object for an internal ID use

obj ect Cont ai ner. ext (). getByl D(id);

Note that #getByID() does not activate objects. If you want to work with objects that you get with
#getByID(), your code would have to make sure the object is activated by calling

obj ect Cont ai ner. acti vat e(obj ect, depth);

db4o assigns internal IDs to any stored first class object. These internal IDs are guaranteed to be
unique within one ObjectContainer/ObjectServer and they will stay the same for every object when an
ObjectContainer/ObjectServer is closed and reopened. Internal IDs will change when an object is

moved from one ObjectContainer to another, as it happens during Defragment.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Activation

13.2. Unique Universal IDs (UUIDs)
For long term external references and to identify an object even after it has been copied or moved to

another ObjectContainer, db4o supplies UUIDs. These UUIDs are not generated by default, since they
occupy some space and consume some performance for maintaining their index. UUIDs can be turned

on globally or for individual classes:

Db4o. configure(). generateUU Ds(Integer. MAX VALUE) ;
Db4o. configure(). obj ect d ass(Foo. cl ass) . generat eUU Ds(true);

The respective methods for working with UUIDs are:

Ext Obj ect Cont ai ner #get Obj ect | nf o(Cbj ect)
nj ect | nf o#get UUI () ;
Ext Qbj ect Cont ai ner #get By UUl D(Db4oUUI D) ;

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

14. Native Query Optimization

Native Queries will run out of the box in any environment. If an optimizer is present in the CLASSPATH
and if optimisation is turned on, Native Queries will be converted to SODA queries where this is

possible, allowing db4o to use indexes and optimized internal comparison algorithms.

If no optimizer is found in the CLASSPATH or if optimization is turned off, Native Quer may be
executed by instantiating all objects, using SODA Evaluations. Naturally performance will not be as

good in this case.

The Native Query optimizer is still under development to eventually "understand" all Java constructs.

Current optimization supports the following constructs well:

compile-time constants

- simple member access

primitive comparisons

#equals() on primitive wrappers and Strings
#contains()/#startsWith()/#endsWith() for Strings

arithmetic expressions

boolean expressions

static field access

array access for static/predicate fields

arbitrary method calls on static/predicate fields (without candidate based params)

candidate methods composed of the above

- chained combinations of the above

This list will constantly grow with the latest versions of db4o.

Note that the current implementation doesn't support polymorphism and multiline methods yet.
db4o for Java supplies three different possibilities to run optimized native queries, optimization at
(1) query execution time

(2) deployment time

(3) class loading time

The three options are described in the following:

14.1. Optimization at query execution time

Note: This will not work with JDK1.1.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

#Evaluations

To enable code analysis and optimization of native query expressions at query query execution time,
you just have to add db4o-5.x-nqopt.jar and bloat-1.x.jar to your CLASSPATH. Optimization can be
turned on and off with the following configuration setting:

Db4o. configure().optim zeNati veQueri es(bool ean optim zeNQ) ;

14.2. Instrumenting class files

Note: Instrumented optimized classes will work with JDK1.1, but the optimization process itself
requires at least JDK 1.2.

File instrumentation can be done either programmatically or during an Ant build.

14.2.1. Programmatic Instrumentation

To instrument all predicate classes in directory 'orig' whose package name starts with 'my.package’

and store the modified files below directory 'instrumented', ensure that db4o-6.3-nqopt.jar and bloat-
1.0.jar are in your CLASSPATH and use code like the following:

new com db4o. nati vequery. mai n. Db4oFi | eEnhancer (). enhance(

"orig", /1 source directory
"instrunented", /1 target directory
new String[]{ /1 class path

“l'ib/my_application.jar",
“lib/db4o-6. 3-javal. x.jar"

}1
"nmy. package" /1 optional package prefix

14.2.2. Ant Instrumentation

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

An equivalent Ant target might look like this:

<t askdef name="db4ooptim ze"
cl assnane="com db4o. nati vequery. mai n. Db4oFi | eEnhancer Ant Task"> <cl as
spat h>

<path path="Ilib/db4o-6.3-javal.x.jar" [>

<pat h pat h="1ib/db4o-6.3-nqopt.jar" />

<path path="lib/bloat-6.3.jar" />

<path path="Ilib/db4o-6.3-javal.x.jar" [>

</ cl asspat h>

</t askdef >

<target name="optim ze">
<db4oopti m ze
srcdir="orig"
targetdi r="instrunent ed"
packagefilter="ny. package">
<cl asspat h>
<path |l ocation="lib/ny_application.jar" />
<path path="Ilib/db4o-6.3-javal.x.jar" [>
</ cl asspat h>
</ db4oenhance>

</target>

All non-Predicate classes will just be copied to the target directory without modification.

14.3. Instrumenting classes at load time

Note: This will not work with JDK1.1.

If classes of an existing application are to be instrumented when they are loaded, a special ClassLoader
needs to be used to run your application, com.db4o.nativequery.main.Db4oEnhancingClassLoader.
Again db4o-6.3-nqopt.jar and bloat-1.0.jar need to be in the CLASSPATH.

All the native query code of your application would need to run in this ClassLoader. If we assume that

you have a static starting method "goNative" in a class named "my.StarterClass", here is how you

could run this method within the special native query ClassLoader:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

Cl assLoader | oader=

new com db4o. nati vequery. mai n. Db4oEnhanci ngC assLoader () ;
Cl ass clazz=l oader.| oadC ass("ny. Starterd ass");
Met hod net hod=cl azz. get Met hod(" goNati ve", new C ass[]{});
met hod. i nvoke(nul |, new Qbject[]{});

To start a full application in optimized mode, you can use the Db4oRunner utility class. If you would

normally start your application like this:

$> java ny. Starterd ass sone argunments

start Db4oRunner with the fully qualified nhame of your main class as the first argument and the actual

arguments appended:

$> java com db4o. nati vequery. mai n. Db4oRunner ny. StarterC ass sonme

argunents

Further options:
- Setting the system class loader
(-Djava.system.class.loader=com.db4o.nativequery.main.Db4oEnhancingClassLoader)
- Configuring Tomcat to use the optimizing class loader
(Tomcat server.xml <Loader/> section)

14.4. Monitoring optimization

This feature still is quite basic but it will soon be improved. Currently you can only attach a listener to

the ObjectContainer:

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

((Obj ect Cont ai ner Base) db) . get Nat i veQuer yHandl er () . addLi st ener (new
Db4oQuer yExecuti onLi st ener () {

public void notifyQueryExecuted(NQOpti m zationlnfo info) {

Systemerr.println(info);

1)

The listener will be notified on each native query call and will be passed the Predicate object processed,
the optimized expression tree (if

successful) and the success status of the optimization run:

NativeQueryHandler.UNOPTIMIZED ("UNOPTIMIZED")

if the predicate could not be optimized and is run in unoptimized mode
NativeQueryHandler.PREOPTIMIZED ("PREOPTIMIZED")
if the predicate already was optimized (due to class file or load time

instrumentation)

NativeQueryHandler.DYNOPTIMIZED ("DYNOPTIMIZED")

if the predicate was optimized at query execution time

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

15. License

db4objects Inc. supplies the object database engine db4o under a triple licensing regime:

15.1. General Public License (GPL)

db4o is free to be used:

- for development,

- in-house as long as no deployment to third parties takes place,
- together with works that are placed under the GPL themselves.

You should have received a copy of the GPL in the file db4o.license.txt together with the db4o
distribution.

If you have questions about when a commercial license is required, please

read our GPL Interpretation policy for further detail, available at:
http://www.db4o.com/about/company/legalpolicies/gplinterpretation.aspx

15.2. Opensource Compatibility license (dOCL)

The db4o Opensource Compatibility License (dOCL) is designed for free/open source projects that want
to embed db4o but do not want to (or are not able to) license their derivative work under the GPL in its
entirety. This initiative aims to proliferate db4o into many more open source projects by providing

compatibility for projects licensed under Apache, LGPL, BSD, EPL, and others, as required by our users.

The terms of this license are available here: "dOCL" agreement.

15.3. Commercial License

For incorporation into own commercial products and for use together with redistributed software that is
not placed under the GPL, db4o is also available under a commercial license.

Visit the purchasing area on the db4o website or contact db4o sales for licensing terms and pricing.
15.4. Bundled 3rd Party Licenses

The db4o distribution comes with the following 3rd party libraries:

-Apache Ant(Apache Software License)

Files: lib/ant.jar, lib/ant.license.txt

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com
http://www.db4o.com/about/company/legalpolicies/docl.aspx
http://www.db4o.com
mailto:sales@db4o.com
http://ant.apache.org/

Ant can be used as a make tool for class file based optimization of native

queries at compile time.

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

-BLOAT(GNU LGPL)

Files: lib/bloat-1.0.jar, lib/bloat.license.txt

Bloat is used for bytecode analysis during native queries optimization. It
needs to be on the classpath during runtime at load time or query execution

time for just-in-time optimization. Preoptimized class files are not dependent
on BLOAT at runtime.

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.cs.purdue.edu/s3/projects/bloat/

16. Contacting db4objects Inc.

db4objects Inc.

1900 South Norfolk Street
Suite 350

San Mateo, CA, 94403
USA

Phone
+1 (650) 577-2340

Fax
+1 (650) 240-0431

Sales

Fill out our sales contact form on the db4o website

or

mail to sales@db4o.com

Support

Visit our free Community Forums

or log into your dDN Member Portal (dDN Members Only).

Careers
career@db4o.com

Partnering
partner@db4o.com

PDF by iText, generated by Doctor, courtesy of db4objects Inc.

http://www.db4o.com/commercial/purchase/enquiry.aspx
mailto:sales@db4o.com
http://forums.db4o.com/forums/
http://db4o.com/commercial/memberzone/
mailto:career@db4o.com
mailto:partner@db4o.com

	Welcome
	Download Contents
	1. First Glance
	1.1. The db4o engine...
	1.2. Installation
	1.3. API Overview

	2. First Steps
	2.1. Opening the database
	2.2. Storing objects
	2.3. Retrieving objects
	2.4. Updating objects
	2.5. Deleting objects
	2.6. Conclusion
	2.7. Full source

	3. Querying
	3.1. Query by Example (QBE)
	3.2. Native Queries
	3.2.1. Concept
	3.2.2. Principle
	3.2.3. Simple Example
	3.2.4. Advanced Example
	3.2.5. Arbitrary Code
	3.2.6. Native Query Performance
	3.2.7. Full source

	3.3. SODA Query API
	3.3.1. Simple queries
	3.3.2. Advanced queries
	3.3.3. Conclusion
	3.3.4. Full source

	4. Structured objects
	4.1. Storing structured objects
	4.2. Retrieving structured objects
	4.2.1. QBE
	4.2.2. Native Queries
	4.2.3. SODA Query API

	4.3. Updating structured objects
	4.3.1. Update depth

	4.4. Deleting structured objects
	4.4.1. Recursive deletion
	4.4.2. Recursive deletion revisited

	4.5. Conclusion
	4.6. Full source

	5. Collections and Arrays
	5.1. Storing
	5.2. Retrieving
	5.2.1. QBE
	5.2.2. Native Queries
	5.2.3. Query API

	5.3. Updating and deleting
	5.4. Conclusion
	5.5. Full source

	6. Inheritance
	6.1. Storing
	6.2. Retrieving
	6.3. Updating and deleting
	6.4. Conclusion
	6.5. Full source

	7. Deep graphs
	7.1. Storing and updating
	7.2. Retrieving
	7.2.1. Activation depth

	7.3. Conclusion
	7.4. Full source

	8. Transactions
	8.1. Commit and rollback
	8.2. Refresh live objects
	8.3. Conclusion
	8.4. Full source

	9. Client/Server
	9.1. Embedded server
	9.2. Networking
	9.3. Native Queries in Client/Server mode
	9.4. Out-of-band signalling
	9.5. Putting it all together: a simple but complete db4o server
	9.6. Conclusion
	9.7. Full source

	10. SODA Evaluations
	10.1. Evaluation API
	10.2. Example
	10.3. Drawbacks
	10.4. Conclusion
	10.5. Full source

	11. Configuration
	11.1. Scope
	11.2. Calling Methods

	12. Indexes
	13. IDs
	13.1. Internal IDs
	13.2. Unique Universal IDs (UUIDs)

	14. Native Query Optimization
	14.1. Optimization at query execution time
	14.2. Instrumenting class files
	14.2.1. Programmatic Instrumentation
	14.2.2. Ant Instrumentation

	14.3. Instrumenting classes at load time
	14.4. Monitoring optimization

	15. License
	15.1. General Public License (GPL)
	15.2. Opensource Compatibility license (dOCL)
	15.3. Commercial License
	15.4. Bundled 3rd Party Licenses

	16. Contacting db4objects Inc.

