

EXPERIMENTACIÓN EN QUÍMICA FÍSICA

Práctica laboratorio:

"Determinación de volúmenes parciales para mezclas binarias alcohol/agua"

Jorge Bañuelos, Luis Lain, Leyre Pérez, Maria Nieves Sánchez Rayo, Alicia Torre, Miren Itziar Urrecha

Dpto Química Física

PRÁCTICA LABORATORIO: "Determinación de volúmenes parcial para mezclas binarias alcohol/agua

OBJETIVO:

Determinación del volumen de mezcla y los volúmenes molares parciales de los componentes de una disolución binaria de distinta composición, a una presión y una temperatura dadas

MEDIDA EXPERIMENTAL:

Dilatometría

Se utiliza para ello, como únicas medidas experimentales, **volúmenes y pesos** de los componentes puros y de la disolución.

□ ¿Qué material requiero? :

MATERIALES

- 2 picnómetros (en estufa)
- 2 jeringas
- 2 varilla (en estufa)
- 3 erlenmeyer con tapón (en estufa)
- 2 buretas
- 2 vasos de precipitados de 100 cm³
- 1 baño termostático
- 1 baño ultrasonidos
- 1 bomba de vacío

SUSTANCIAS

Agua / Alcohol

Alcohol: etanol

2-propanol

1-propanol

PROCEDIMIENTO EXPERIMENTAL

A: AGUA

B: UN ALCOHOL

A P atmosférica y a T fija se determinarán $\omega_{\rm R}$ y $V^{\rm e}$

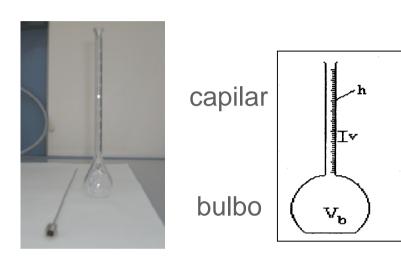
 $\omega_B = m_B/(m_A + m_B)$, se determinará pesando en un erlenmeyer con tapón

ERLENMEYER TAPADO! Y NO TARAR!

1.- Pesar erlenmeyer sólo

2.- Pesar erlenmeyer + V_A

3.- Erlenmeyer + $V_A + V_B$


 P_0

 P_1

 P_2

Ve = 1/d para determinar la d(densidad): picnómetro

PICNÓMETRO

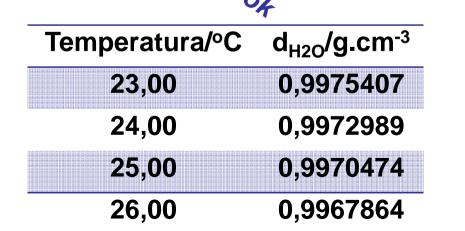
$$V_h = V_b + v.h$$

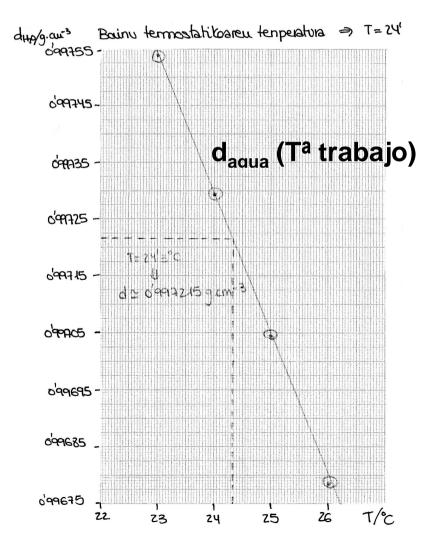
V_h: volumen total

V_b: volumen del bulbo

h: altura del capilar

v: volumen de cada marca


Conocido V_b y V_h para determinar la densidad del líquido será suficiente con medir la masa y la altura del picnómetro que contiene la disolución.


Antes de usarlo hay que calibrarlo

☐ Calibración del picnómetro:

Calibrado consiste en determinar V_b y v empleando agua

d(H₂O, T_{baño}) se determinará gráficamente (Excel)

Con el picnómetro siempre tapado:

1.- Pesar picnómetro vacío: P₀

2.- Meter disolución en picnómetro hasta h

3.- Pesar Ileno: P

4.- Termostatizar 10 min. Leer la altura, h

h	-	-	-
V _h		-	-

repetir con distintas hs

$$V_h = \frac{m_{H_2O}}{d_{H_2O}}$$

1 ichometro 2 (F ₀ . 10.379g)			/			
	V _h (mL)	h	P (g)	v (mL)	V _b (mL)	
	9.340	4.9	25.693	0.0420	9.1381	
	8.292	3.75	25.645	0.0417	9.1375	
	8.298	3.9	25.651	0.0400	9.1373	

V_h vs h Dibujar (Excel) y determinar

$$V_h = V_b + v.h$$

pendiente= v y ordenada= V_b

Diamomatus 2 (D . 16 270cm)

v (medio): 0.0412 mL;

V_{b (medio)}: 9.1376 mL;

Determinación de la densidad de las mezclas

Preparación de disoluciones:

B 4		4	
$N/I \cap D \cap A$	10.00	CONTRO	α
IVIALIEI			
IVICIIO		centra	

Opción		Α	В	С	D
Contenido alcohol	en	%10,%40, %70	%20,%50, %80	%30,%60, %90	%25,%45, %75

• d(mezcla, T_{baño})

1.- Pesar picnómetro vacío

 P_0

- 2.- Meter agua en picnómetro hasta h
- 3.- Pesar lleno

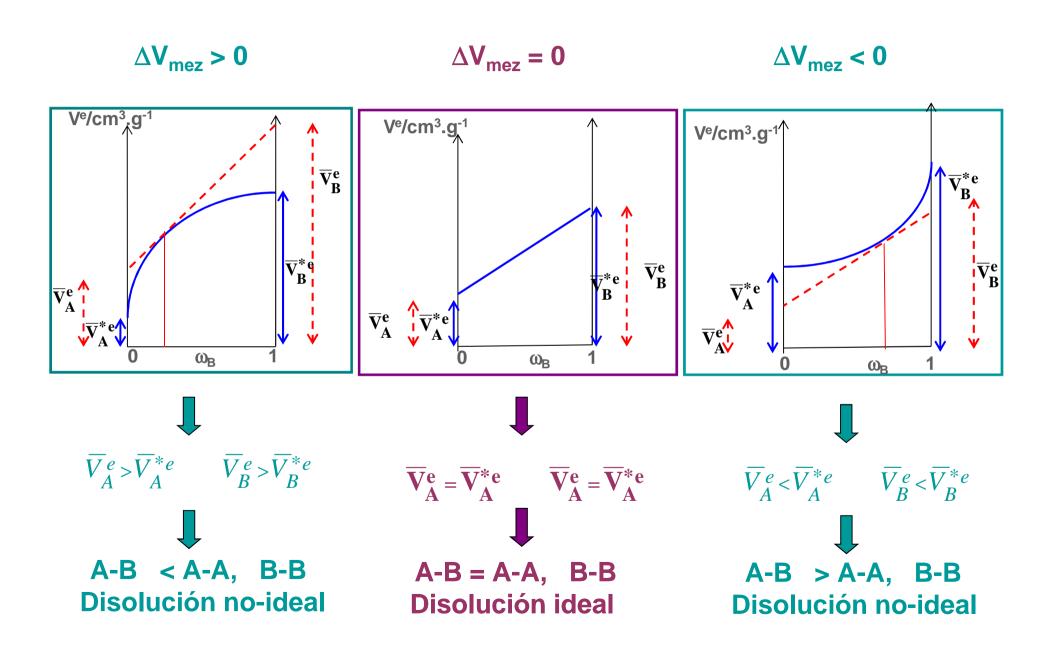
 P'_1

4.- Termostatizar 10 min. Leer la altura, h

repetir con distintas h

$$V_{h'1} = V_b + v.h'_1$$
 $d_1 = (P'_1 - P_0)/V_{h'1}$

Mezcla 70%


h	$P_{A}(g)$	$V_h(mL)$	$\rho (g/mL)$
2.8	8.017	9.2530	0.8664
3.3	8.033	9.2736	0.8662
6.8	8.181	9.4178	0.8687

 $d_{h'1} = 0.8671 \text{ g/mL}$

ANÁLISIS DE RESULTADOS

X _{etanol}	D _{etanol} (g/mL)	Ve _{etanol} (g/mL)	
0,0000	0,99720	1,0028	
10,000	0,98220	1,0181	
20,000	0,96640	1,0348	
25,000	0,96040	1,0412	
30,000	0,95290	1,0494	
40,000	0,94310	1,0603	
45,000	0,93000	1,0753	
50,000	0,90100	1,1099	
60,000	0,88500	1,1299	
70,000	0,86710	1,1533	
75,000	0,85610	1,1681	
80,000	0,84030	1,1901	
90,000	0,80970	1,2350	
100,00	0,78340	1,2765	

