Problemas de análisis de sensibilidad

1. Considerar el siguiente modelo lineal y la tabla óptima

 $\max \ z = 4x_1 + x_2 + 5x_3$ sujeto a $x_1 + x_2 + x_3 \le 4$ $2x_1 + x_2 + 3x_3 \le 10$

 $3x_1 + x_2 + 4x_3 \le 16$

 $x_1, x_2, x_3 \ge 0$

	w 1	w <u>z</u>	w3	w4	w 5	ω0	
	0	2	0	2	1	0	18
\mathbf{a}_1	1	2	0	3	-1	0	2
\mathbf{a}_3	0	-1	1	-2	1	0	2
\mathbf{a}_6	0	-1	0	-1	-1	1	2

1.1 Analizar el efecto de los siguientes cambios discretos en la tabla óptima del modelo. Calcular en cada caso la solución óptima del nuevo modelo.

$$\mathbf{b}) \qquad \mathbf{b} = \begin{pmatrix} 4 \\ 10 \\ 16 \end{pmatrix} \qquad \rightarrow \qquad \stackrel{\wedge}{\mathbf{b}} = \begin{pmatrix} 4 \\ 10 \\ 18 \end{pmatrix}$$

c)
$$\mathbf{c}^{T} = (4 \ 1 \ 5)$$
 \rightarrow $\mathbf{\hat{c}}^{T} = (3 \ 3 \ 5)$
d) $\mathbf{c}^{T} = (4 \ 1 \ 5)$ \rightarrow $\mathbf{\hat{c}}^{T} = (5 \ 1 \ 7)$

d)
$$\mathbf{c}^T = \begin{pmatrix} 4 & 1 & 5 \end{pmatrix} \longrightarrow \hat{\mathbf{c}}^T = \begin{pmatrix} 5 & 1 & 7 \end{pmatrix}$$

e)
$$\mathbf{a}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 \rightarrow $\hat{\mathbf{a}}_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$

f)
$$\mathbf{a}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 \rightarrow $\hat{\mathbf{a}}_2 = \begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$

g) Nueva variable:
$$x_4$$
 $c_4 = 6$ $\mathbf{a}_4 = \begin{pmatrix} 1 \\ 3 \\ 6 \end{pmatrix}$

h) Nueva variable:
$$x_4$$
 $c_4 = 3$ $\mathbf{a}_4 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$

- Nueva restricción: $2x_1 + 4x_2 + x_3 \le 8$ i)
- j) Nueva restricción: $4x_1 + x_2 + 2x_3 \le 8$
- 1.2 Calcular los precios sombra.
- 1.3 Calcular el recorrido de cada componente del vector \mathbf{c} y del vector b manteniendo el resto de componentes constantes para que la tabla óptima dada no pierda la optimalidad.
- 2. Considerar el siguiente modelo lineal y la tabla óptima

$$\max \ z = 4x_1 + 6x_2 + 5x_3$$
 sujeto a
$$x_1 + 2x_2 + 2x_3 \le 12$$

$$2x_1 + 4x_2 + 2x_3 \le 14$$

$$x_1 + x_2 + 2x_3 \le 6$$

$$x_1, x_2, x_3 \ge 0$$

	x_1	x_2	x_3	x_4	x_5	x_6	
	0	0	1	0	1	2	26
\mathbf{a}_4	0	0	1	1	$-\frac{1}{2}$	0	5
\mathbf{a}_2	0	1	-1	0	$\frac{1}{2}$	-1	1
\mathbf{a}_1	1	0	3	0	$-\frac{1}{2}$	2	5

2.1 Analizar el efecto de los siguientes cambios discretos en la tabla óptima. Calcular en cada caso la solución óptima del nuevo mod-

a)
$$\mathbf{b} = \begin{pmatrix} 12 \\ 14 \\ 6 \end{pmatrix} \longrightarrow \begin{pmatrix} \hat{\mathbf{b}} = \begin{pmatrix} 7 \\ 14 \\ 6 \end{pmatrix}$$
b)
$$\mathbf{b} = \begin{pmatrix} 12 \\ 14 \\ 6 \end{pmatrix} \longrightarrow \begin{pmatrix} \hat{\mathbf{b}} = \begin{pmatrix} 12 \\ 18 \\ 10 \end{pmatrix}$$

$$\mathbf{b}) \qquad \mathbf{b} = \begin{pmatrix} 12 \\ 14 \\ 6 \end{pmatrix} \qquad \rightarrow \qquad \stackrel{\wedge}{\mathbf{b}} = \begin{pmatrix} 12 \\ 18 \\ 10 \end{pmatrix}$$

c)
$$\mathbf{c}^T = (4 \ 6 \ 5) \rightarrow \mathbf{c}^T = (6 \ 8 \ 2)$$

d)
$$\mathbf{c}^T = (4 \ 6 \ 5) \rightarrow \hat{\mathbf{c}}^T = (4 \ 6 \ 9)$$

c)
$$\mathbf{c}^{T} = (4 \ 6 \ 5)$$
 \rightarrow $\mathbf{\hat{c}}^{T} = (6 \ 8 \ 2)$
d) $\mathbf{c}^{T} = (4 \ 6 \ 5)$ \rightarrow $\mathbf{\hat{c}}^{T} = (4 \ 6 \ 9)$
e) $\mathbf{a}_{3} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$ \rightarrow $\mathbf{\hat{a}}_{3} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$

f)
$$\mathbf{a}_3 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \longrightarrow \hat{\mathbf{a}}_3 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

g) Nueva variable:
$$x_4$$
 $c_4 = 2$ $\mathbf{a}_4 = \begin{pmatrix} 3 \\ 6 \\ 2 \end{pmatrix}$
h) Nueva variable: x_4 $c_4 = 5$ $\mathbf{a}_4 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

h) Nueva variable:
$$x_4$$
 $c_4 = 5$ $\mathbf{a}_4 = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

- Nueva restricción: $x_1 + 2x_2 \le 6$ i)
- j) Nueva restricción: $x_1 + 3x_2 + 2x_3 \le 10$
- 2.2 Calcular los precios sombra.
- 2.3 Calcular el recorrido de cada componente del vector \mathbf{c} y del vector b manteniendo el resto constante para que la tabla óptima dada no pierda la optimalidad.
- 3. Una editorial quiere editar 3 tipos de libros de cocina, L_1, L_2 y L_3 . Para ello cuenta con 40 expertos/as en elaboración de menús diarios, 20 expertos/as en postres y 10 expertos/as en pinchos. Para el diseño de los libros forma tres tipos de equipos: el Equipo 1 para el diseño de libros L_1 , el Equipo 2 para el diseño de libros L_2 y el Equipo 3 para el diseño de libros L_3 . La composición de los equipos se da en la siguiente tabla.

Equipos	expertos/as en	expertos/as en	expertos/as en	
	menú diario	postres	pinchos	
Equipo 1	2	2	1	
Equipo 2	4	1	0	
Equipo 3	4	0	1	
Total	40	20	10	

El precio en el mercado es el mismo para los libros L_1 , L_2 y L_3 .

Cada equipo de tipo j diseña un libro de tipo j, j = 1, 2, 3.

Si definimos x_j : número de equipos de tipo $j,\ j=1,2,3,$ que se pueden formar, podemos plantear el siguiente modelo para determinar el número óptimo de equipos de cada tipo. Sumando una variable de holgura en cada restricción y resolviendo el modelo se obtiene la tabla óptima que se da junto al modelo.

$$\max z = x_1 + x_2 + x_3$$
sujeto a
$$2x_1 + 4x_2 + 4x_3 \le 40$$

$$2x_1 + x_2 \le 20$$

$$x_1 + x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

	x_1	x_2	x_3	x_4	x_5	x_6	
	0	0	0	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	14
\mathbf{a}_2	0	1	0	$\frac{1}{5}$	$\frac{1}{5}$	$-\frac{4}{5}$	4
\mathbf{a}_1	1	0	0	$-\frac{1}{10}$	$\frac{2}{5}$	$\frac{2}{5}$	8
\mathbf{a}_3	0	0	1	$\frac{1}{10}$	$-\frac{2}{5}$	$\frac{3}{5}$	2

- 3.1 Analizando el modelo lineal y la tabla óptima, ¿cúantos equipos se pueden formar con los expertos/as disponibles? ¿Cuántos libros de cada tipo de publican?
- 3.2 ¿Hay algún/una experto/a que no participe en ninguno de los equipos?
- 3.3 Si la editorial contara con 30 expertos/as en postres ¿cuántos equipos podría formar?
- 4. En una fábrica se compran 26 kg de pintura roja, 14 kg de pintura azul y 32 kg de pintura amarilla para producir los colores C_1 , C_2 , C_3 y C_4 que están de moda actualmente. Estos colores se producen mezclando los colores básicos. Las mezclas se hacen de la siguiente manera:

Composición 1 kg de
$$C_1$$
: $\frac{1}{2}$ kg roja + $\frac{1}{4}$ kg azul + $\frac{1}{4}$ kg amarilla Composición 1 kg de C_2 : $\frac{3}{8}$ kg roja + $\frac{1}{4}$ kg azul + $\frac{3}{8}$ kg amarilla Composición 1 kg de C_3 : $\frac{1}{3}$ kg roja + $\frac{1}{3}$ kg azul + $\frac{1}{3}$ kg amarilla Composición 1 kg de C_4 : $\frac{3}{10}$ kg roja + $\frac{2}{5}$ kg azul + $\frac{3}{10}$ kg amarilla

El/la responsable de la empresa sabe que el beneficio de un kg de pintura C_1, C_2, C_3 y C_4 es 3, 4, 1 y 6 unidades monetarias, respectivamente, para cada uno de los colores. Lo que no conoce es qué cantidad de cada color, C_1, C_2, C_3 y C_4 , le conviene producir. Para ello plantea un modelo lineal cuya solución óptima le permita tomar las decisiones que le proporcionen el máximo beneficio.

$$\begin{array}{l} \max \ z = 3x_1 + 4x_2 + x_3 + 6x_4 \\ \text{sujeto a} \\ \frac{1}{2}x_1 + \frac{3}{8}x_2 + \frac{1}{3}x_3 + \frac{3}{10}x_4 \leq 26 \\ \frac{1}{4}x_1 + \frac{1}{4}x_2 + \frac{1}{3}x_3 + \frac{2}{5}x_4 \leq 14 \\ \frac{1}{4}x_1 + \frac{3}{8}x_2 + \frac{1}{3}x_3 + \frac{3}{10}x_4 \leq 32 \\ x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

1 0	$\frac{13}{3}$ $\frac{2}{5}$	0	16	0	224
$\mathbf{a}_5 = \frac{1}{8} = 0$	$-\frac{1}{6}$ $-\frac{3}{10}$	1	$-\frac{3}{2}$	0	5
\mathbf{a}_2 1 1	$\frac{4}{3}$ $\frac{8}{5}$	0	4	0	56
$\mathbf{a}_7 -\frac{1}{8} 0$	$-\frac{1}{6}$ $-\frac{3}{10}$	0	$-\frac{3}{2}$	1	11

- 4.1 Analizando la solución de la tabla, ¿se puede decir que el/la responsable de la empresa compra los colores básicos en cantidades adecuadas? Calcular el precio sombra de cada recurso.
- 4.2 El/La responsable sospecha que compra poca pintura azul. ¿Qué cantidad de pintura azul puede comprar como máximo sin tener que calcular una nueva tabla?
- 4.3 Suponer que se compra más pintura azul y menos pintura roja y amarilla, en las siguientes cantidades

$$\mathbf{b} = \begin{pmatrix} 26 \\ 14 \\ 32 \end{pmatrix} \longrightarrow \mathbf{b} = \begin{pmatrix} 24 \\ 20 \\ 31 \end{pmatrix}$$

¿Qué cantidades de pintura $C_1,\,C_2,\,C_3$ y C_4 conviene producir para obtener el máximo beneficio?