Sensitivity analysis. Solutions

1. 1.1 The new optimal solutions:

1.1.1 $x_1^* = 0, \quad x_2^* = 0, \quad x_3^* = 2, \quad z^* = 10.$ 1.1.2 $x_1^* = 2, \quad x_2^* = 0, \quad x_3^* = 2, \quad z^* = 18.$ 1.1.3 $x_1^* = 0, \quad x_2^* = 1, \quad x_3^* = 3, \quad z^* = 18.$ 1.1.4 $x_1^* = 2, \quad x_2^* = 0, \quad x_3^* = 2, \quad z^* = 24.$ 1.1.5 $x_1^* = 2, \quad x_2^* = 0, \quad x_3^* = 2, \quad z^* = 18.$ 1.1.6 Multiple optimal solutions, $z^* = 18.$ 1.1.7 $x_1^* = 2, \quad x_2^* = 0, \quad x_3^* = 1, \quad x_4^* = 1, \quad z^* = 19.$ 1.1.8 $x_1^* = 2, \quad x_2^* = 0, \quad x_3^* = 2, \quad x_4^* = 0, \quad z^* = 18.$ 1.1.9 $x_1^* = 2, \quad x_2^* = 0, \quad x_3^* = 2, \quad z^* = 18.$ 1.1.10 $x_1^* = \frac{1}{2}, \quad x_2^* = 0, \quad x_3^* = 3, \quad z^* = 17.$

1.2 The interpretation of shadow prices.

• The interpretation of the shadow price for the first resource, b_1 .

$$\overset{\wedge}{\mathbf{b}} = \begin{pmatrix} 5\\10\\16 \end{pmatrix}, \quad \mathbf{x}_B = \mathbf{B}^{-1} \overset{\wedge}{\mathbf{b}} = \begin{pmatrix} 5\\0\\1 \end{pmatrix} \ge \mathbf{0}.$$

 y_1^* is the shadow price for b_1 . If b_1 changes from 4 to 5, the new optimal objective value is $\hat{z} = z + y_1^* = 18 + 2 = 20$, and the new optimal solution $x_1^* = 5$, $x_2^* = 0$, $x_3^* = 0$.

• The interpretation of the shadow price for the second resource, b_2 .

$$\overset{\wedge}{\mathbf{b}} = \begin{pmatrix} 4\\11\\16 \end{pmatrix}, \quad \mathbf{x}_B = \mathbf{B}^{-1} \overset{\wedge}{\mathbf{b}} = \begin{pmatrix} 1\\3\\1 \end{pmatrix} \ge \mathbf{0}$$

 y_2^* is the shadow price for b_2 . If b_2 changes from 10 to 11, the new optimal objective value is $\hat{z} = z + y_2^* = 18 + 1 = 19$, and the new optimal solution $x_1^* = 1$, $x_2^* = 0$, $x_3^* = 3$.

• The interpretation of the shadow price for the third resource, b_3 .

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}4\\10\\15\end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}2\\2\\1\end{pmatrix}\geq\mathbf{0}.$$

 y_3^* is the shadow price for b_3 . If b_3 changes from 16 to 15, the new optimal objective value is $\hat{z} = z - y_3^* = 18 - 0 = 18$, and the new optimal solution $x_1^* = 2$, $x_2^* = 0$, $x_3^* = 2$.

1.3 The range of values that leaves the current basis unchanged, for each of the components in vector \mathbf{c} :

$$\frac{10}{3} \le c_1 \le 5, \qquad c_2 \le 3, \qquad 4 \le c_3 \le 6.$$

The range of values that leaves the current basis unchanged, for each of the components in vector **b**:

$$\frac{10}{3} \le b_1 \le 5, \qquad 8 \le b_2 \le 12, \qquad b_3 \ge 14.$$

2. 2.1 The new optimal solutions:

2.2 The interpretation of shadow prices.

• The interpretation of the shadow price for the first resource, b_1 .

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}11\\14\\6\end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}4\\1\\5\end{pmatrix}\geq\mathbf{0}.$$

 y_1^* is the shadow price for b_1 . If b_1 changes from 12 to 11, the new optimal objective value is $\hat{z} = z - y_1^* = 26 - 0 = 26$, and the new optimal solution $x_1^* = 5$, $x_2^* = 1$, $x_3^* = 0$.

• The interpretation of the shadow price for the second resource, b_2 .

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}12\\15\\6\end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}\frac{9}{2}\\\frac{3}{2}\\\frac{9}{2}\end{pmatrix}\geq\mathbf{0}.$$

 y_2^* is the shadow price for b_2 . If b_2 changes from 14 to 15, the new optimal objective value is $\hat{z} = z + y_2^* = 26 + 1 = 27$, and the new optimal solution $x_1^* = \frac{9}{2}$, $x_2^* = \frac{3}{2}$, $x_3^* = 0$.

• The interpretation of the shadow price for the third resource, b_3 .

$$\overset{\wedge}{\mathbf{b}} = \begin{pmatrix} 12\\ 14\\ 7 \end{pmatrix}, \quad \mathbf{x}_B = \mathbf{B}^{-1} \overset{\wedge}{\mathbf{b}} = \begin{pmatrix} 5\\ 0\\ 7 \end{pmatrix} \ge \mathbf{0}.$$

 y_3^* is the shadow price for b_3 . If b_3 changes from 6 to 7, the new optimal objective value is $\hat{z} = z + y_3^* = 26 + 2 = 28$, and the new optimal solution $x_1^* = 7$, $x_2^* = 0$, $x_3^* = 0$.

2.3 The range of values that leaves the current basis unchanged, for each of the components in vector \mathbf{c} :

$$\frac{11}{3} \le c_1 \le 6, \qquad 4 \le c_2 \le 7, \qquad c_3 \le 6.$$

The range of values that leaves the current basis unchanged, for each of the components in vector **b**:

$$b_1 \ge 7,$$
 $12 \le b_2 \le 24,$ $\frac{7}{2} \le b_3 \le 7.$

3. 3.1 8 cookery books of type B_1 will be designed, 4 cookery books of type B_2 , and 2 cookery books of type B_3 :

$$x_1^* = 8, \quad x_2^* = 4, \quad x_3^* = 2.$$

A total amount of $z^* = 14$ cookery book designs will be produced.

- 3.2 The optimal solution $x_1^* = 8$, $x_2^* = 4$, $x_3^* = 2$ verifies the three constraints with equality. Therefore, all the cooks take part in a team.
- 3.3 If $c_1 = 2$, the optimal solution is $x_1^* = 8$, $x_2^* = 4$, $x_3^* = 2$, $z^* = 22$. If $c_1 = 3$, there are multiple optimal solutions.

$$x_1^* = 8, \ x_2^* = 4, \ x_3^* = 2, z^* = 30.$$

 $x_1^* = 10, \ x_2^* = 0, \ x_3^* = 0, z^* = 30.$

 c_1 can be increased $c_1 \leq 3$ at most, if we want the number of type B_i cookery books designed to remain unchanged.

3.4 10 cookery books of type B_1 will be designed, 5 cookery books of type B_2 and 0 cookery books of type B_3 :

$$x_1^* = 10, \quad x_2^* = 5, \quad x_3^* = 0.$$

Thus, no cookery book of type B_3 will be produced. A total amount of $z^* = 15$ cookery books will be designed.

- 4. 4.1 The interpretation of shadow prices.
 - The interpretation of the shadow price for the first resource b_1 , (red paint).

$$\stackrel{\wedge}{\mathbf{b}} = \begin{pmatrix} 25\\ 14\\ 32 \end{pmatrix}, \quad \mathbf{x}_B = \mathbf{B}^{-1} \stackrel{\wedge}{\mathbf{b}} \ge \mathbf{0}.$$

 y_1^* is the shadow price for b_1 , and since $y_1^* = 0$, if 25 kg of red paint were bought instead of 26 kg, the optimal benefit would remain the same, $\hat{z} = z - y_1^* = 224 - 0 = 224$. By substituting the optimal solution into the first constraint we can see that too much red paint is being bought, because only 21 kg are being used.

• The interpretation of the shadow price for the second resource b_2 , (blue paint).

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix} 26\\15\\32 \end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}\geq \mathbf{0}.$$

 y_2^* is the shadow price for b_2 , and since $y_2^* = 16$, if one more kg of blue paint was bought (15 kg instead of 14 kg), the optimal benefit would be increased by $\hat{z} = z + y_2^* = 224 + 16 = 240$. By substituting the optimal solution into the second constraint we can see that all the blue paint available is currently being used in the production of the new colors.

• The interpretation of the shadow price for the third resource b_3 , (yellow paint).

$$\stackrel{\wedge}{\mathbf{b}} = \begin{pmatrix} 26\\ 14\\ 31 \end{pmatrix}, \quad \mathbf{x}_B = \mathbf{B}^{-1} \stackrel{\wedge}{\mathbf{b}} \ge \mathbf{0}.$$

 y_3^* is the shadow price for b_3 , and since $y_3^* = 0$, if 31 kg of yellow paint were bought instead of 32 kg, the optimal benefit would remain the same $\hat{z} = z - y_3^* = 224 - 0 = 224$. By substituting the optimal solution into the third constraint we can see that too much yellow paint is being bought; there is more yellow paint than required.

- 4.2 At most $\frac{52}{3}$ kg can be bought.
- 4.3 The new optimal solution:

$$x_1^* = 0, \quad x_2^* = 48, \quad x_3^* = 0, \quad x_4^* = 20, \quad z^* = 312.$$