Duality. Solutions

1. The dual models to the given linear problems.
1.1. $\max G=y_{1}+7 y_{2}+10 y_{3}$ subject to

$$
\begin{array}{r}
y_{1}+2 y_{2}+y_{3} \geq 2 \\
2 y_{1}-2 y_{2}+2 y_{3} \leq 3 \\
5 y_{1}+4 y_{2}+y_{3}=-4 \\
y_{1}, y_{3} \geq 0, y_{2}: \text { unrestricted }
\end{array}
$$

1.3. $\min G=12 y_{1}-8 y_{2}+10 y_{3}$ subject to

$$
\begin{aligned}
2 y_{1}-y_{2}+3 y_{3} & \leq 2 \\
y_{1}+5 y_{2}+4 y_{3} & \geq 2 \\
2 y_{1}-2 y_{2}-6 y_{3} & \geq 5
\end{aligned}
$$

$y_{1}:$ unrestricted, $y_{2} \leq 0, y_{3} \geq 0$
1.5. $\max G=-6 y_{1}+6 y_{2}+10 y_{3}$ subject to

$$
\begin{array}{r}
4 y_{1}+y_{2}+5 y_{3} \geq 4 \\
-2 y_{1}+y_{2}+2 y_{3} \geq 1 \\
3 y_{1}+y_{2}-y_{3} \leq-1 \\
y_{1}+y_{2}-y_{3} \leq 2
\end{array}
$$

$y_{1} \leq 0, y_{2}$: unrestricted, $y_{3} \geq 0$
1.2. $\max G=-7 y_{1}+12 y_{2}+5 y_{3}$ subject to

$$
\begin{aligned}
4 y_{1}+2 y_{2}+2 y_{3} & \leq 1 \\
-y_{1}-4 y_{2}+8 y_{3} & \leq 3 \\
2 y_{1}+4 y_{3} & \leq 1 \\
y_{1} \leq 0, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

1.4. $\min G=-4 y_{1}+2 y_{2}+6 y_{3}$ subject to

$$
\begin{aligned}
y_{1}-y_{2}+4 y_{3} & \geq 1 \\
y_{1}+6 y_{2}-y_{3} & \geq 1 \\
2 y_{1}+2 y_{2}+y_{3} & =5
\end{aligned}
$$

$y_{1} \geq 0, y_{2} \leq 0, y_{3}:$ unrestricted
1.6. $\min G=14 y_{1}-6 y_{2}+10 y_{3}+3 y_{4}$ subject to

$$
\begin{array}{r}
2 y_{1}-y_{2}+4 y_{3}+y_{4} \geq 1 \\
-4 y_{1}+8 y_{2}+6 y_{3}+9 y_{4} \leq 4 \\
y_{1}, y_{3} \geq 0, y_{2} \leq 0, y_{4}: \text { unrestricted }
\end{array}
$$

2. Graphical solutions for the given models and the associated dual models.
2.1 Unique optimal solution, $x_{1}^{*}=\frac{8}{7}, x_{2}^{*}=\frac{12}{7}, z^{*}=\frac{104}{7}$.

$$
\begin{array}{r}
\max G=4 y_{1}+8 y_{2} \\
\text { subject to } \\
2 y_{1}+y_{2} \leq 4 \\
y_{1}+4 y_{2} \leq 6 \\
y_{1}, y_{2} \geq 0
\end{array}
$$

The dual model has a unique optimal solution, $y_{1}^{*}=\frac{10}{7}, y_{2}^{*}=\frac{8}{7}, G^{*}=\frac{104}{7}$.

2.2 Unique optimal solution, $x_{1}^{*}=1, x_{2}^{*}=1, z^{*}=10$.

$$
\begin{aligned}
& \min G=22 y_{1}+8 y_{2} \\
& \text { subject to } \\
& 10 y_{1}+2 y_{2} \geq 4 \\
& 12 y_{1}+6 y_{2} \geq 6 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

The dual model has a unique optimal solution, $y_{1}^{*}=\frac{1}{3}, y_{2}^{*}=\frac{1}{3}, G^{*}=10$.

2.3 Multiple optimal solutions; the two extreme points

$$
x_{1}^{*}=0, x_{2}^{*}=3 \quad \text { and } \quad x_{1}^{*}=\frac{9}{4}, x_{2}^{*}=\frac{15}{4}
$$

and the infinite points lying on the segment line. $z^{*}=18$ for all of them.

$\min G=9 y_{1}+6 y_{2}$
subject to

$$
\begin{array}{r}
-y_{1}+y_{2} \geq-2 \\
3 y_{1}+y_{2} \geq 6 \\
y_{1}, y_{2} \geq 0
\end{array}
$$

The dual model has a unique optimal solution, $y_{1}^{*}=2, y_{2}^{*}=0, G^{*}=18$.

2.4 The problem is unbounded.

The dual problem is infeasible.

3. The solution to the linear models applying the dual simplex algorithm.
3.1 A unique optimal solution.

$$
x_{1}^{*}=4, \quad x_{2}^{*}=0, \quad x_{3}^{*}=0, \quad z^{*}=-8
$$

3.2 A unique optimal solution.

$$
x_{1}^{*}=0, \quad x_{2}^{*}=3, \quad x_{3}^{*}=8, \quad x_{4}^{*}=0, \quad z^{*}=27
$$

3.3 Multiple optimal solutions, $z^{*}=-30$.
3.4 The problem is infeasible.
3.5 The problem is infeasible.
3.6 A unique optimal solution.

$$
x_{1}^{*}=0, \quad x_{2}^{*}=6, \quad x_{3}^{*}=0, \quad x_{4}^{*}=12, \quad z^{*}=84
$$

3.7 A unique optimal solution.

$$
x_{1}^{*}=11, \quad x_{2}^{*}=0, \quad x_{3}^{*}=1, \quad x_{4}^{*}=0, \quad z^{*}=35
$$

3.8 The problem is unbounded.
3.9 The problem is unbounded.
4. 4.1 The dual model:

$$
\begin{aligned}
& \min G=2 y_{1}+3 y_{2}+3 y_{3}+2 y_{4} \\
& \text { subject to } \\
& y_{1}+2 y_{2}+2 y_{3}+4 y_{4} \geq 10 \\
& 2 y_{1}+y_{2}+2 y_{3}+y_{4} \geq 6 \\
& y_{1}, y_{2}, y_{3}, y_{4} \geq 0
\end{aligned}
$$

4.2 The optimal solution to the dual model obtained applying the dual simplex algorithm:

$$
y_{1}^{*}=2, \quad y_{2}^{*}=0, \quad y_{3}^{*}=0, \quad y_{4}^{*}=2, \quad G^{*}=8
$$

4.3 The optimal solution to the primal problem extracted directly from the optimal tableau computed for the dual problem:

$$
x_{1}^{*}=\frac{2}{7}, \quad x_{2}^{*}=\frac{6}{7}, \quad z^{*}=8 .
$$

5. 5.1 The dual model:

$$
\begin{array}{r}
\max G=20 y_{1}+16 y_{2}+18 y_{3}+21 y_{4} \\
\text { subject to } \\
4 y_{1}+6 y_{2}+4 y_{3}+4 y_{4} \leq 30 \\
2 y_{1}+4 y_{2}+2 y_{3}+4 y_{4} \leq 28 \\
y_{1}, y_{2}, y_{3}, y_{4} \geq 0
\end{array}
$$

5.2 The optimal solution to the dual model obtained applying the simplex algorithm:

$$
y_{1}^{*}=1, \quad y_{2}^{*}=0, \quad y_{3}^{*}=0, \quad y_{4}^{*}=\frac{13}{2}, \quad G^{*}=\frac{313}{2}
$$

5.3 The optimal solution to the primal problem extracted directly from the optimal tableau computed for the dual problem:

$$
x_{1}^{*}=\frac{19}{4}, \quad x_{2}^{*}=\frac{1}{2}, \quad z^{*}=\frac{313}{2} .
$$

6. 6.1 (a) The optimal solution to the model:

$$
x_{1}^{*}=\frac{7}{2}, \quad x_{2}^{*}=\frac{3}{2}, \quad x_{3}^{*}=0, \quad z^{*}=\frac{57}{2} .
$$

(b) The optimal solution to the dual model is $y_{1}^{*}=\frac{3}{20}, \quad y_{2}^{*}=\frac{1}{4}, \quad G^{*}=\frac{57}{2}$. The dual model:

$$
\begin{aligned}
& \min G=90 y_{1}+60 y_{2} \\
& \text { subject to } \\
& 15 y_{1}+15 y_{2} \geq 6 \\
& 25 y_{1}+5 y_{2} \geq 5 \\
& 30 y_{1}+15 y_{2} \geq 4 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

(c) The interpretation of the shadow price associated with the resource b_{1}.

$$
\hat{\mathbf{b}}=\binom{91}{60}, \quad \mathbf{x}_{B}=\mathbf{B}^{-1} \hat{\mathbf{b}}=\binom{\frac{31}{20}}{\frac{209}{60}} \geq \mathbf{0}
$$

y_{1}^{*} is the shadow price associated with the resource b_{1}. If the resource b_{1} increases from 90 units to 91 units, $\hat{z}=z+y_{1}^{*}=\frac{57}{2}+\frac{3}{20}=\frac{573}{20}$ holds, and the new optimal solution:

$$
x_{1}^{*}=\frac{209}{60}, \quad x_{2}^{*}=\frac{31}{20}, \quad x_{3}^{*}=0
$$

The interpretation of the shadow price associated with the resource b_{2}.

$$
\hat{\mathbf{b}}=\binom{90}{61}, \quad \mathbf{x}_{B}=\mathbf{B}^{-1} \hat{\mathbf{b}}=\binom{\frac{29}{20}}{\frac{215}{60}} \geq \mathbf{0} .
$$

y_{2}^{*} is the shadow price associated with the resource b_{2}. If the resource b_{2} increases from 60 units to 61 units, $\hat{z}=z+y_{2}^{*}=\frac{57}{2}+\frac{1}{4}=\frac{115}{4}$ holds, and the new optimal solution:

$$
x_{1}^{*}=\frac{215}{60}, \quad x_{2}^{*}=\frac{29}{20}, \quad x_{3}^{*}=0 .
$$

6.2 (a) The optimal solution to the model:

$$
x_{1}^{*}=12, \quad x_{2}^{*}=0, \quad x_{3}^{*}=0, \quad z^{*}=24 .
$$

(b) The optimal solution to the dual model is $y_{1}^{*}=2, \quad y_{2}^{*}=0, \quad G^{*}=24$. The dual model:

$$
\begin{array}{r}
\min G=12 y_{1}+8 y_{2} \\
\text { subject to } \\
y_{1}+4 y_{2} \geq 2 \\
2 y_{1}+2 y_{2} \geq 1 \\
4 y_{1} \geq-1 \\
y_{1} \geq 0, y_{2} \leq 0
\end{array}
$$

(c) The interpretation of the shadow price associated with the resource b_{1}.

$$
\hat{\mathbf{b}}=\binom{13}{8}, \quad \mathbf{x}_{B}=\mathbf{B}^{-1} \hat{\mathbf{b}}=\binom{44}{13} \geq \mathbf{0} .
$$

y_{1}^{*} is the shadow price associated with the resource b_{1}. If the resource b_{1} increases from 12 units to 13 units, $\hat{z}=z+y_{1}^{*}=24+2=26$ holds, and the new optimal solution:

$$
x_{1}^{*}=13, \quad x_{2}^{*}=0, \quad x_{3}^{*}=0 .
$$

The interpretation of the shadow price associated with the resource b_{2}.

$$
\hat{\mathbf{b}}=\binom{12}{7}, \quad \mathbf{x}_{B}=\mathbf{B}^{-1} \hat{\mathbf{b}}=\binom{41}{12} \geq \mathbf{0}
$$

y_{2}^{*} is the shadow price associated with the resource b_{2}. If the resource b_{2} decreases from 8 units to 7 units, $\hat{z}=z-y_{2}^{*}=24-0=24$ holds, and the new optimal solution:

$$
x_{1}^{*}=12, \quad x_{2}^{*}=0, \quad x_{3}^{*}=0 .
$$

