Duality. Solutions

1. The dual models to the given linear problems.

max $G = y_1 + 7y_2 + 10y_3$ 1.2. max $G = -7y_1 + 12y_2 + 5y_3$ 1.1. subject to subject to $y_1 + 2y_2 + y_3 \ge 2$ $4y_1 + 2y_2 + 2y_3 < 1$ $2y_1 - 2y_2 + 2y_3 \le 3$ $-y_1 - 4y_2 + 8y_3 \le 3$ $5y_1 + 4y_2 + y_3 = -4$ $2y_1 + 4y_3 < 1$ $y_1 < 0, y_2, y_3 > 0$ $y_1, y_3 \ge 0, y_2$: unrestricted 1.3. min $G = 12y_1 - 8y_2 + 10y_3$ 1.4. min $G = -4y_1 + 2y_2 + 6y_3$ subject to subject to $2y_1 - y_2 + 3y_3 \le 2$ $y_1 - y_2 + 4y_3 \ge 1$ $y_1 + 5y_2 + 4y_3 > 2$ $y_1 + 6y_2 - y_3 \ge 1$ $2y_1 - 2y_2 - 6y_3 \ge 5$ $2y_1 + 2y_2 + y_3 = 5$ y_1 : unrestricted, $y_2 \le 0, y_3 \ge 0$ $y_1 \ge 0, y_2 \le 0, y_3$: unrestricted 1.5. max $G = -6y_1 + 6y_2 + 10y_3$ 1.6. min $G = 14y_1 - 6y_2 + 10y_3 + 3y_4$

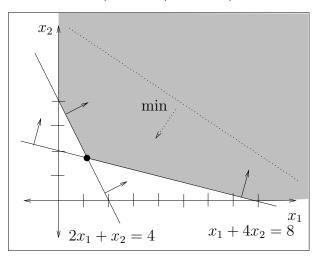
subject to

$$2y_1 - y_2 + 4y_3 + y_4 \ge 1$$
$$-4y_1 + 8y_2 + 6y_3 + 9y_4 \le 4$$
$$y_1, y_3 \ge 0, y_2 \le 0, y_4 : \text{unrestricted}$$

 $4y_1 + y_2 + 5y_3 \ge 4$ $-2y_1 + y_2 + 2y_3 \ge 1$ $3y_1 + y_2 - y_3 \le -1$ $y_1 + y_2 - y_3 \le 2$ $y_1 \le 0, y_2 : \text{unrestricted}, y_3 \ge 0$

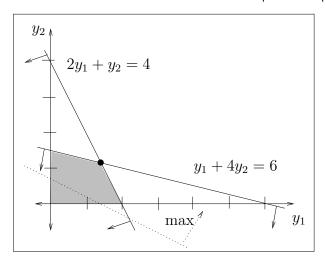
subject to

- 2. Graphical solutions for the given models and the associated dual models.
 - 2.1 Unique optimal solution, $x_1^* = \frac{8}{7}, x_2^* = \frac{12}{7}, z^* = \frac{104}{7}.$

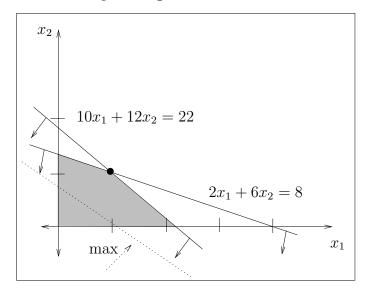


 $\max G = 4y_1 + 8y_2$
subject to
 $2y_1 + y_2 \le 4$
 $y_1 + 4y_2 \le 6$
 $y_1, y_2 \ge 0$

The dual model has a unique optimal solution, $y_1^* = \frac{10}{7}$, $y_2^* = \frac{8}{7}$, $G^* = \frac{104}{7}$.

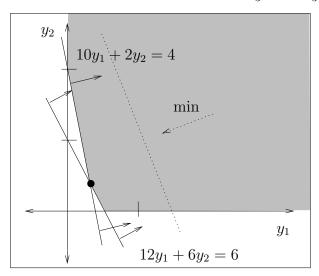


2.2 Unique optimal solution, $x_1^* = 1$, $x_2^* = 1$, $z^* = 10$.



min $G = 22y_1 + 8y_2$ subject to $10y_1 + 2y_2 \ge 4$ $12y_1 + 6y_2 \ge 6$ $y_1, y_2 \ge 0$

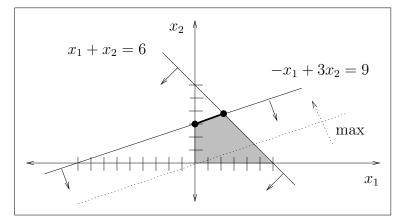
The dual model has a unique optimal solution, $y_1^* = \frac{1}{3}$, $y_2^* = \frac{1}{3}$, $G^* = 10$.



2.3 Multiple optimal solutions; the two extreme points

$$x_1^* = 0, \ x_2^* = 3$$
 and $x_1^* = \frac{9}{4}, \ x_2^* = \frac{15}{4},$

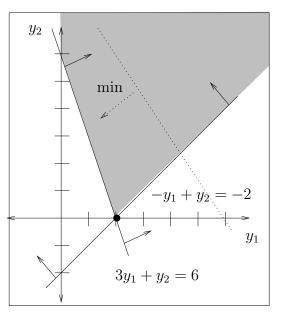
and the infinite points lying on the segment line. $z^* = 18$ for all of them.



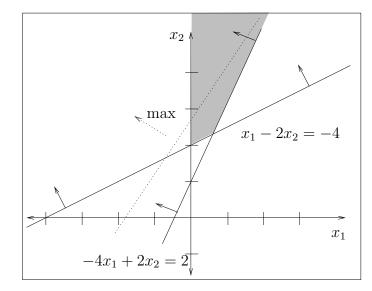
min
$$G = 9y_1 + 6y_2$$

subject to
 $-y_1 + y_2 \ge -2$
 $3y_1 + y_2 \ge 6$
 $y_1, y_2 \ge 0$

The dual model has a unique optimal solution, $y_1^* = 2$, $y_2^* = 0$, $G^* = 18$.

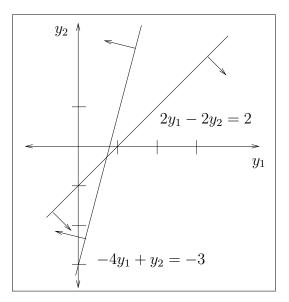


2.4 The problem is unbounded.



min $G = 2y_1 - 4y_2$ subject to $-4y_1 + y_2 \ge -3$ $2y_1 - 2y_2 \ge 2$ $y_1 \le 0, y_2 \ge 0$

The dual problem is infeasible.



- 3. The solution to the linear models applying the dual simplex algorithm.3.1 A unique optimal solution.
 - * 4 * 2

$$x_1^* = 4, \quad x_2^* = 0, \quad x_3^* = 0, \quad z^* = -8$$

3.2 A unique optimal solution.

$$x_1^* = 0, \quad x_2^* = 3, \quad x_3^* = 8, \quad x_4^* = 0, \quad z^* = 27$$

- 3.3 Multiple optimal solutions, $z^* = -30$.
- 3.4 The problem is infeasible.
- 3.5 The problem is infeasible.
- 3.6 A unique optimal solution.

$$x_1^* = 0, \quad x_2^* = 6, \quad x_3^* = 0, \quad x_4^* = 12, \quad z^* = 84$$

3.7 A unique optimal solution.

$$x_1^* = 11, \quad x_2^* = 0, \quad x_3^* = 1, \quad x_4^* = 0, \quad z^* = 35$$

- 3.8 The problem is unbounded.
- 3.9 The problem is unbounded.

4. 4.1 The dual model:

min
$$G = 2y_1 + 3y_2 + 3y_3 + 2y_4$$

subject to
 $y_1 + 2y_2 + 2y_3 + 4y_4 \ge 10$
 $2y_1 + y_2 + 2y_3 + y_4 \ge 6$
 $y_1, y_2, y_3, y_4 \ge 0$

4.2 The optimal solution to the dual model obtained applying the dual simplex algorithm:

$$y_1^* = 2, \quad y_2^* = 0, \quad y_3^* = 0, \quad y_4^* = 2, \quad G^* = 8.$$

4.3 The optimal solution to the primal problem extracted directly from the optimal tableau computed for the dual problem:

$$x_1^* = \frac{2}{7}, \quad x_2^* = \frac{6}{7}, \quad z^* = 8.$$

5. 5.1 The dual model:

max
$$G = 20y_1 + 16y_2 + 18y_3 + 21y_4$$

subject to
 $4y_1 + 6y_2 + 4y_3 + 4y_4 \le 30$
 $2y_1 + 4y_2 + 2y_3 + 4y_4 \le 28$
 $y_1, y_2, y_3, y_4 \ge 0$

5.2 The optimal solution to the dual model obtained applying the simplex algorithm:

$$y_1^* = 1, \quad y_2^* = 0, \quad y_3^* = 0, \quad y_4^* = \frac{13}{2}, \quad G^* = \frac{313}{2}$$

5.3 The optimal solution to the primal problem extracted directly from the optimal tableau computed for the dual problem:

$$x_1^* = \frac{19}{4}, \quad x_2^* = \frac{1}{2}, \quad z^* = \frac{313}{2}.$$

6. 6.1 (a) The optimal solution to the model:

$$x_1^* = \frac{7}{2}, \quad x_2^* = \frac{3}{2}, \quad x_3^* = 0, \quad z^* = \frac{57}{2}.$$

(b) The optimal solution to the dual model is $y_1^* = \frac{3}{20}$, $y_2^* = \frac{1}{4}$, $G^* = \frac{57}{2}$. The dual model:

min
$$G = 90y_1 + 60y_2$$

subject to
 $15y_1 + 15y_2 \ge 6$
 $25y_1 + 5y_2 \ge 5$
 $30y_1 + 15y_2 \ge 4$
 $y_1, y_2 \ge 0$

(c) The interpretation of the shadow price associated with the resource b_1 .

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}91\\60\end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}\frac{31}{20}\\\frac{209}{60}\end{pmatrix}\geq\mathbf{0}$$

 y_1^* is the shadow price associated with the resource b_1 . If the resource b_1 increases from 90 units to 91 units, $\hat{z} = z + y_1^* = \frac{57}{2} + \frac{3}{20} = \frac{573}{20}$ holds, and the new optimal solution:

$$x_1^* = \frac{209}{60}, \quad x_2^* = \frac{31}{20}, \quad x_3^* = 0$$

The interpretation of the shadow price associated with the resource b_2 .

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}90\\61\end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix}\frac{29}{20}\\\frac{215}{60}\end{pmatrix}\geq\mathbf{0}.$$

 y_2^* is the shadow price associated with the resource b_2 . If the resource b_2 increases from 60 units to 61 units, $\hat{z} = z + y_2^* = \frac{57}{2} + \frac{1}{4} = \frac{115}{4}$ holds, and the new optimal solution:

$$x_1^* = \frac{215}{60}, \quad x_2^* = \frac{29}{20}, \quad x_3^* = 0.$$

6.2 (a) The optimal solution to the model:

$$x_1^* = 12, \quad x_2^* = 0, \quad x_3^* = 0, \quad z^* = 24.$$

(b) The optimal solution to the dual model is $y_1^* = 2$, $y_2^* = 0$, $G^* = 24$. The dual model:

min
$$G = 12y_1 + 8y_2$$

subject to
 $y_1 + 4y_2 \ge 2$
 $2y_1 + 2y_2 \ge 1$
 $4y_1 \ge -1$
 $y_1 \ge 0, y_2 \le 0$

(c) The interpretation of the shadow price associated with the resource b_1 .

$$\stackrel{\wedge}{\mathbf{b}}=\left(\begin{array}{c}13\\8\end{array}\right),\quad\mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\left(\begin{array}{c}44\\13\end{array}\right)\geq\mathbf{0}.$$

 y_1^* is the shadow price associated with the resource b_1 . If the resource b_1 increases from 12 units to 13 units, $\hat{z} = z + y_1^* = 24 + 2 = 26$ holds, and the new optimal solution:

$$x_1^* = 13, \quad x_2^* = 0, \quad x_3^* = 0$$

The interpretation of the shadow price associated with the resource b_2 .

$$\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix} 12\\ 7 \end{pmatrix}, \quad \mathbf{x}_B=\mathbf{B}^{-1}\stackrel{\wedge}{\mathbf{b}}=\begin{pmatrix} 41\\ 12 \end{pmatrix}\geq \mathbf{0}.$$

 y_2^* is the shadow price associated with the resource b_2 . If the resource b_2 decreases from 8 units to 7 units, $\stackrel{\wedge}{z} = z - y_2^* = 24 - 0 = 24$ holds, and the new optimal solution:

$$x_1^* = 12, \quad x_2^* = 0, \quad x_3^* = 0.$$