Linear Modeling and Graphical Solution. Solutions

Linear Modeling

1. The jam production problem.

Decision variables:
$x_{i}=$ number of kg of type i one flavour jam to be produced, $i=1$ (apple), 2 (plum), 3 (peach).
$y_{i}=$ number of kg of type i two flavours jam to be produced, $i=1$ (apple+plum), 2 (apple + peach).

Linear model:
$\max z=(2-0.4) x_{1}+(2-0.6) x_{2}+(2-0.8) x_{3}+$
$+(2.5-0.4) \frac{1}{2}\left(y_{1}+y_{2}\right)+(2.5-0.6) \frac{1}{2} y_{1}+(2.5-0.8) \frac{1}{2} y_{2}$
subject to

$$
\begin{aligned}
x_{1} & \geq 175 \\
x_{2} & \geq 160 \\
x_{3} & \geq 150 \\
x_{1}+\frac{1}{2} y_{1}+\frac{1}{2} y_{2} & \leq 1000 \\
x_{2}+\frac{1}{2} y_{1} & \leq 600 \\
x_{3}+\frac{1}{2} y_{2} & \leq 800 \\
x_{1}, x_{2}, x_{3}, y_{1}, y_{2} & \geq 0
\end{aligned}
$$

2. The fruit salad production problem.

Decision variables:
$x_{i}=$ Quantity of fruit i in one kg of normal fruit salad, $i=1$ (cherry), 2 (watermelon), 3 (mango), 4 (orange), 5 (melon), 6 (banana).
$y_{i}=$ Quantity of fruit i in one kg of low calorie fruit salad, $i=1$ (cherry), 2 (watermelon), 3 (mango), 4 (orange), 5 (melon), 6 (banana).

Linear model:

$$
\begin{aligned}
\min z & =7\left(x_{1}+y_{1}\right)+0.9\left(x_{2}+y_{2}\right)+4\left(x_{3}+y_{3}\right)+ \\
& +1.6\left(x_{4}+y_{4}\right)+1.4\left(x_{5}+y_{5}\right)+1.5\left(x_{6}+y_{6}\right)
\end{aligned}
$$

subject to
$250 x_{1}+100 x_{2}+150 x_{3}+400 x_{4}+140 x_{5}+90 x_{6} \geq 150$
$200 x_{1}+90 x_{2}+220 x_{3}+200 x_{4}+160 x_{5}+280 x_{6} \geq 200$
$120 x_{1}+60 x_{2}+50 x_{3}+550 x_{4}+300 x_{5}+100 x_{6} \geq 200$
$700 y_{1}+300 y_{2}+580 y_{3}+490 y_{4}+300 y_{5}+900 y_{6} \leq 400$
$200 y_{1}+90 y_{2}+220 y_{3}+200 y_{4}+160 y_{5}+280 y_{6} \geq 100$
$120 y_{1}+60 y_{2}+50 y_{3}+550 y_{4}+300 y_{5}+100 y_{6} \geq 250$
$x_{1}+x_{2} \geq 0.1\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)$
$y_{1}+y_{2} \geq 0.1\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}\right)$
$x_{3}+x_{4} \geq 0.3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)$
$y_{3}+y_{4} \geq 0.3\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}\right)$
$x_{5}+x_{6} \geq 0.2\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)$
$y_{5}+y_{6} \geq 0.2\left(y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}\right)$
$x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=1$
$y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}=1$
$x_{i}, y_{i} \geq 0, \quad i=1,2,3,4,5,6$
3. The problem of the summer camps.

Decision variables:

$x_{i j}=$ number of girls whose mother tongue is i will go to the summer camp S_{j}, $i=b$ (Basque), s (Spanish), $j=1,2$.
$y_{i j}=$ number of boys whose mother tongue is i will go to the summer camp S_{j}, $i=b$ (Basque), s (Spanish), $j=1,2$.

Linear model:

$$
\begin{array}{r}
\min z=8 x_{b 1}+8 y_{b 1}+8 x_{s 1}+8 y_{s 1}+26 x_{b 2}+26 y_{b 2}+26 x_{s 2}+26 y_{s 2} \\
\text { subject to } \\
x_{b 1}+x_{b 2}=650 \\
y_{b 1}+y_{b 2}=600 \\
x_{s 1}+x_{s 2}=475 \\
y_{s 1}+y_{s 2}=475 \\
x_{b 1}+y_{b 1}+x_{s 1}+y_{s 1}<=800 \\
x_{b 1}+y_{b 1} \geq 0.5\left(x_{b 1}+y_{b 1}+x_{s 1}+y_{s 1}\right) \\
x_{b 2}+y_{b 2} \geq 0.5\left(x_{b 2}+y_{b 2}+x_{s 2}+y_{s 2}\right) \\
x_{b 1}+x_{s 1} \geq 0.5\left(x_{b 1}+y_{b 1}+x_{s 1}+y_{s 1}\right) \\
x_{b 2}+x_{s 2} \geq 0.5\left(x_{b 2}+y_{b 2}+x_{s 2}+y_{s 2}\right) \\
x_{b 1}, x_{b 2}, x_{s 1}, x_{s 2} \geq 0 \quad \text { and integer } \\
y_{b 1}, y_{b 2}, y_{s 1}, y_{s 2} \geq 0 \quad \text { and integer }
\end{array}
$$

4. The problem about the textile enterprise.

Decision variables:
$x_{i j}=$ number of suits of type j fabric produced in month $i, i=1, \ldots, 6, j=1$ (new), 2 (recycled).
$y_{i j}=$ number of suits of type j fabric stored in month $i, i=1, \ldots, 5, j=1$ (new), 2 (recycled) .

Linear model:

$$
\begin{aligned}
\min z & =70\left(x_{11}+x_{21}+x_{31}+x_{41}+x_{51}+x_{61}\right)+60\left(x_{12}+x_{22}+x_{32}+x_{42}+\right. \\
& \left.+x_{52}+x_{62}\right)+y_{11}+y_{21}+y_{31}+y_{41}+y_{51}+y_{12}+y_{22}+y_{32}+y_{42}+y_{52}
\end{aligned}
$$

subject to

$$
\begin{array}{rlr}
x_{11}=100+y_{11}, & x_{12}=100+y_{12} \\
x_{21}+y_{11}=300+y_{21}, & x_{22}+y_{12}=150+y_{22} \\
x_{31}+y_{21}=500+y_{31}, & x_{32}+y_{22}=300+y_{32} \\
x_{41}+y_{31}=600+y_{41}, & x_{42}+y_{32}=200+y_{42} \\
x_{51}+y_{41}=200+y_{51}, & x_{52}+y_{42}=100+y_{52} \\
x_{61}+y_{51}=450, & x_{62}+y_{52}=300 \\
x_{11} \leq 400, & x_{12} \leq 200 \\
& x_{21} \leq 400, & x_{22} \leq 200 \\
& x_{31} \leq 400, & x_{32} \leq 200 \\
& x_{41} \leq 400, & x_{42} \leq 200 \\
& x_{51} \leq 400, & x_{52} \leq 200 \\
& x_{61} \leq 400, & x_{62} \leq 200 \\
x_{i j} \geq 0 \text { and integer }, & i=1, \ldots, 6, j=1,2 \\
y_{i j} \geq 0 \text { and integer }, & i=1, \ldots, 5, j=1,2
\end{array}
$$

5. The inter-school competition problem.

Decision variables:

$$
x_{i}= \begin{cases}1 & \text { if child } i \text { is selected to form the group, } \quad i=1, \ldots, 20 . \\ 0 & \text { otherwise } .\end{cases}
$$

Linear model:

$$
\begin{aligned}
& \min z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}+x_{8}+x_{9}+x_{10}+ \\
& \quad+x_{11}+x_{12}+x_{13}+x_{14}+x_{15}+x_{16}+x_{17}+x_{18}+x_{19}+x_{20}
\end{aligned}
$$

subject to

$$
\begin{aligned}
& x_{2}+x_{6}+x_{7}+x_{12}+x_{19} \geq 1 \\
& x_{5}+x_{13}+x_{14} \geq 1 \\
& x_{9}+x_{15}+x_{18} \geq 1 \\
& x_{1}+x_{4}+x_{9}+x_{10}+x_{20} \geq 1 \\
& x_{13}+x_{17} \geq 1 \\
& x_{3}+x_{8}+x_{11}+x_{12}+x_{16} \geq 1 \\
& x_{1}+x_{2}+\cdots+x_{20} \geq 3 \\
& x_{i}=0,1, \quad i=1, \ldots, 20
\end{aligned}
$$

Graphical Solution

1. There is a unique optimal solution: $x_{1}^{*}=0, x_{2}^{*}=2, z^{*}=-2$.

2. There is a unique optimal solution: $x_{1}^{*}=\frac{2}{3}, x_{2}^{*}=\frac{10}{3}, z^{*}=-\frac{32}{3}$.

3. There are multiple optimal solutions: the extreme point $x_{1}^{*}=0, x_{2}^{*}=2$, the extreme point $x_{1}^{*}=2, x_{2}^{*}=1$, and the infinite points lying on the segment line between the two extreme points are all of them optimal solutions to the given linear model. $z^{*}=8$.

4. Unbounded solution.

5. There are multiple optimal solutions: the extreme point $x_{1}^{*}=0, x_{2}^{*}=1$, the extreme point $x_{1}^{*}=2, x_{2}^{*}=0$, and the infinite points lying on the segment line between the two extreme points are all of them optimal solutions to the given linear model. $z^{*}=2$.

6. Infeasible problem.

7. There is a unique optimal solution: $x_{1}^{*}=\frac{4}{5}, x_{2}^{*}=\frac{3}{5} \cdot z^{*}=\frac{36}{5}$.

8. Unbounded solution.

