Duality. Exercises

1. Write the dual models of the following linear problems:

1.1. min $z = 2x_1 + 3x_2 - 4x_3$ subject to $x_1 + 2x_2 + 5x_3 \ge 1$ $2x_1 - 2x_2 + 4x_3 = 7$ $x_1 + 2x_2 + x_3 \ge 10$ $x_1 + 2x_2 + x_3 \ge 10$ $x_1 + 2x_2 + x_3 \ge 10$ $x_1 \le 0, x_2 \ge 0, x_3$: unrestricted 1.2. min $z = x_1 + 3x_2 + x_3$ subject to $4x_1 - x_2 + 2x_3 \le -7$ $2x_1 - 4x_2 \ge 12$ $2x_1 - 4x_2 \ge 12$ $x_1 + 8x_2 + 4x_3 \ge 5$ $x_1, x_2, x_3 \ge 0$

1.3. max $z = 2x_1 + 2x_2 + 5x_3$ 1.4. subject to

$$2x_1 + x_2 + 2x_3 = 12$$

-x₁ + 5x₂ - 2x₃ \ge -8
3x₁ + 4x₂ - 6x₃ \le 10
x₁ \le 0, x₂, x₃ \ge 0

subject to $x_1 + x_2 + 2x_3 \le -4$ $-x_1 + 6x_2 + 2x_3 \ge 2$

max $z = x_1 + x_2 + 5x_3$

$$4x_1 - x_2 + x_3 = 6$$

 $x_1, x_2 \ge 0, x_3$: unrestricted

1.5. min
$$z = 4x_1 + x_2 - x_3 + 2x_4$$

subject to

$$4x_1 - 2x_2 + 3x_3 + x_4 \le -6$$
$$x_1 + x_2 + x_3 + x_4 = 6$$
$$5x_1 + 2x_2 - x_3 - x_4 \ge 10$$
$$x_1, x_2 \le 0, x_3, x_4 \ge 0$$

1.6. max
$$z = x_1 + 4x_2$$

subject to

$$2x_{1} - 4x_{2} \le 14$$
$$-x_{1} + 8x_{2} \ge -6$$
$$4x_{1} + 6x_{2} \le 10$$
$$x_{1} + 9x_{2} = 3$$
$$x_{1} \ge 0, x_{2} \le 0$$

- 2. Consider the following linear models. Write the corresponding dual models, and solve both of them using the graphical solution. What type of solution do they have? A unique solution, multiple solutions, the problem is unbounded or the problem is infeasible.
 - 2.1. min $z = 4x_1 + 6x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 + 4x_2 \ge 8$ $x_1, x_2 \ge 0$ 2.2. max $z = 4x_1 + 6x_2$ subject to $10x_1 + 12x_2 \le 22$ $2x_1 + 6x_2 \le 8$ $x_1, x_2 \ge 0$ $x_1, x_2 \ge 0$
 - 2.3. max $z = -2x_1 + 6x_2$ subject to $-x_1 + 3x_2 \le 9$ $x_1 + x_2 \le 6$ $x_1, x_2 \ge 0$ 2.4. max $z = -3x_1 + 2x_2$ subject to $-4x_1 + 2x_2 \ge 2$ $x_1 - 2x_2 \le -4$ $x_1, x_2 \ge 0$

3. Solve the following linear models applying the dual simplex algorithm.

3.1. max $z = -2x_1 - 4x_2 - 3x_3$ 3.2. min $z = 2x_1 + x_2 + 3x_3 + 2x_4$ subject to subject to $2x_1 + x_2 + 2x_3 > 8$ $2x_1 + 2x_2 + 2x_3 + 2x_4 > 22$ $4x_1 + 2x_2 + 2x_3 > 10$ $4x_1 + 4x_2 + x_3 + 4x_4 < 20$ $6x_1 + x_2 + 4x_3 > 12$ $2x_1 + 8x_2 + 2x_3 + x_4 > 15$ $x_1, x_2, x_3 > 0$ $x_1, x_2, x_3, x_4 > 0$ 3.3. max $z = -2x_1 - 3x_2 - x_3 - x_4$ 3.4. max $z = -6x_1 - 4x_2 - 5x_3 - 4x_4$ subject to subject to $x_1 + x_2 + 3x_3 + x_4 < 40$ $2x_1 + 4x_2 + 2x_3 + 5x_4 \le 10$ $2x_1 + 3x_2 + x_3 + x_4 > 30$ $x_1 + 2x_2 \qquad \qquad + x_4 \ge 25$ $+x_3 < 25$ $x_1, x_2, x_3, x_4 > 0$ $2x_1$ $x_1, x_2, x_3, x_4 > 0$

3.5. max $z = -2x_1 - x_2 - 2x_3 - x_4$ subject to $6x_1 + 2x_2 + 6x_3 + 3x_4 \le 12$ $2x_1 + x_2 + 2x_3 + 2x_4 \ge 12$ $x_1 + 2x_2 + 6x_3 + 4x_4 \ge 14$ $x_1, x_2, x_3, x_4 \ge 0$

3.7. max
$$z = 3x_1 - 2x_2 + 2x_3 + x_4$$

subject to
 $3x_1 + 6x_2 + 3x_3 + 2x_4 \le 36$

$$x_1 + 2x_2 + 3x_3 + x_4 \ge 14$$
$$x_1 + x_2 + x_3 + 2x_4 \ge 10$$
$$x_1, x_2, x_3, x_4 \ge 0$$

3.9. max $z = 4x_1 - 2x_2 + 3x_3 - 3x_4$ subject to $6x_1 - 6x_2 + 9x_3 + 3x_4 > 28$

$$3x_1 + x_2 + x_3 - 3x_4 \ge 22$$
$$x_1, x_2, x_3, x_4 \ge 0$$

4. Consider the following linear model:

$$\max \ z = 10x_1 + 6x_2$$

subject to
$$x_1 + 2x_2 \le 2$$

$$2x_1 + x_2 \le 3$$

$$2x_1 + 2x_2 \le 3$$

$$4x_1 + x_2 \le 2$$

$$x_1, x_2 \ge 0$$

- 4.1 Write the corresponding dual model.
- 4.2 Solve the dual model applying the most appropriate algorithm: the simplex algorithm or the dual simplex algorithm.
- 4.3 Extract the optimal solution to the primal problem directly from the optimal tableau computed for the dual problem.

3.6. max $z = -3x_1 + 4x_2 + 2x_3 + 5x_4$ subject to

$$4x_1 + 2x_2 + 4x_3 + 3x_4 \le 48$$
$$-x_1 + 2x_2 - x_3 + 2x_4 \ge 8$$
$$2x_1 - x_2 + x_3 + x_4 \ge 6$$
$$x_1, x_2, x_3, x_4 \ge 0$$

3.8. max
$$z = 6x_1 + 5x_2 + 5x_3$$

subject to
 $-x_1 + x_2 + 2x_3 \ge 40$
 $2x_1 - 2x_2 - x_3 \ge 30$
 $x_1, x_2, x_3 \ge 0$

5. Consider the following linear model:

min
$$z = 30x_1 + 28x_2$$

subject to
 $4x_1 + 2x_2 \ge 20$
 $6x_1 + 4x_2 \ge 16$
 $4x_1 + 2x_2 \ge 18$
 $4x_1 + 4x_2 \ge 21$
 $x_1, x_2 \ge 0$

- 5.1 Write the corresponding dual model.
- 5.2 Solve the dual model applying the most appropriate algorithm: the simplex algorithm or the dual simplex algorithm.
- 5.3 Extract the optimal solution to the primal problem directly from the optimal tableau computed for the dual problem.

6. Consider the following linear models and their corresponding optimal tableau:

6.1 The model that follows has been solved using the simplex algorithm.

$\max \ z = 6x_1 + 5x_2 + 4x_3$		x_1	x_2	x_3	x_4	x_5	
subject to		0	0	$\frac{17}{4}$	$\frac{3}{20}$	$\frac{1}{4}$	$\frac{57}{2}$
$15x_1 + 25x_2 + 30x_3 \le 90$	\mathbf{a}_2	0	1	$\frac{3}{4}$	$\frac{1}{20}$	$-\frac{1}{20}$	$\frac{3}{2}$
$15x_1 + 5x_2 + 15x_3 \le 60$	\mathbf{a}_1	1	0	$\frac{3}{4}$	$-\frac{1}{60}$	$\frac{1}{12}$	$\frac{7}{2}$
$x_1, x_2, x_3 > 0$							

6.2 The model that follows has been solved using the simplex algorithm, after adding to the model an artificial variable and penalizing the objective function.

$\max \ z = 2x_1 + x_2 - x_3$		x_1	x_2	x_3	x_4	x_5	w_1	
subject to		0	3	9	2	0	M	24
$x_1 + 2x_2 + 4x_3 \le 12$	\mathbf{a}_5	0	6	16	4	1	-1	40
$4x_1 + 2x_2 \ge 8$	\mathbf{a}_1	1	2	4	1	0	0	12
$x_1, x_2, x_3 \ge 0$								

For each of them, answer the following questions:

- (a) Extract the optimal solution to the problem from the optimal tableau.
- (b) Write the corresponding dual problem, and extract the optimal solution to the dual problem from the optimal tableau computed for the primal problem.
- (c) Interpret the shadow prices.