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1. Matrices and vectors

The elements of R are called scalars.

An m× n matrix A is a rectangular array of scalars:

A =















a11 a12 · · · a1n

a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn















If a matrix has just one column, m×1, it is said to be
a column vector.

a =















a11

a21
...

am1
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1.1 Matrix operations

Addition of matrices

Given matrices A = (aij) ∈ R
m×n, B = (bij) ∈ R

m×n,
the addition of A and B, denoted by A + B, is the
matrix C = (cij) ∈ R

m×n obtained by performing the
addition componentwise:

cij = aij + bij, i = 1, . . . ,m, j = 1, . . . , n.

Properties

1. The addition of matrices is an inner operation.

A,B ∈ R
m×n ⇒ A+B ∈ R

m×n.

2. The addition of matrices is commutative.

∀A,B ∈ R
m×n

A+B = B+A.

3. The addition of matrices is associative.

∀A,B,C ∈ R
m×n (A+B) +C = A+ (B+C).

4. There exists a neutral element for the addition.

∀A ∈ R
m×n

A+0 = 0+A = A, where 0 ∈ R
m×n.

5. There exist opposite elements for the addition.

∀A ∈ R
m×n

A+ (−A) = (−A) +A = 0,

where −A ∈ R
m×n.
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Scalar multiplication

Let α ∈ R be a scalar and A = (aij) ∈ R
m×n a matrix.

The operation of multiplying A by α, is represented by
α ·A and is performed by multiplying every element of
A by α. The result is a matrix

B = (bij) ∈ R
m×n

where

bij = α · aij, i = 1, . . . ,m, j = 1, . . . , n.

Inner product

The multiplication of a row vector aT and a column
vector b is called the inner product of the two vectors,
and is denoted by aT · b. The result of this multiplica-
tion is a real number, and it is obtained in the following
way:

a
T = (a1 · · · an) ∈ R

1×n, b =









b1
...

bn









∈ R
n.

a
T · b = (a1 · · · an) ·









b1
...

bn









=

n
�

i=1

ai · bi.
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Matrix multiplication

Let A ∈ R
m×n be an m × n matrix and B ∈ R

n×p an
n× p matrix.

The product A ·B is defined as the m× p matrix C =
A · B ∈ R

m×p, where the entry (i, j) in C is the inner
product of the ith row of A and the jth column of B.

Properties

1. It is associative. ∀A ∈ R
m×n, ∀B ∈ R

n×p, ∀C ∈ R
p×q

(A ·B) ·C = A · (B ·C).

2. It is distributive with respect to the sum.

∀A,B ∈ R
m×n, ∀C ∈ R

n×p, (A+B)·C = A·C+B·C.

∀A ∈ R
m×n, ∀B,C ∈ R

n×p, A·(B+C) = A·B+A·C.

3. ∀A ∈ R
m×n, A · 0n×p = 0m×p, 0q×m ·A = 0q×n.

4. ∀A ∈ R
m×n, Im ·A = A · In = A.

5. ∀α ∈ R , ∀A ∈ R
m×n, ∀B ∈ R

n×p,

α · (A ·B) = (α ·A) ·B = A · (α ·B).
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1.2 The rank of a matrix

Definition 1 Let A ∈ R
m×n be a matrix, and let U be

the resulting matrix after performing Gaussian elimi-

nation. The rank of matrix A is denoted by rank A

and is equal to the number of pivot elements of matrix

U.

2. Systems of linear equations

Let us consider a system with m linear equations of n

variables

Ax = b,

where A ∈ R
m×n, rank A = r and b ∈ R

m. We shall
solve the system by performing Gaussian elimination.

The following cases may arise:

* rank A �= rank (A b). The system has no solution.
It is inconsistent.

* rank A = rank (A b) = r. There exists at least
one solution to the system. It is consistent.

* r = number of variables. There exists a unique
(one and only one) solution.

* r < number of variables. There exists an infi-
nite number of solutions.
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2.1. Basic solutions

Let Ax = b be a system, where A ∈ R
m×n, m < n, and

rank A = rank (A b) = m.

Assume that the first m columns of A are linearly in-
dependent. Let B be the m×m submatrix of A formed
by its first m columns. Let N denote the last n − m

columns of A. We can write the system Ax = b in the
following way:

(B N)





xB

xN



 = b,

or

BxB +NxN = b.

Variables in xB: basic variables.

Variables in xN : nonbasic variables.

BxB = b−NxN.

Setting all the nonbasic variables equal to zero, xN =
0, we obtain a system whose solution is unique:

BxB = b.

The solution thus calculated is called a basic solution
of the system.

The maximum number of basic solutions:




n

m



 =
n!

m! (n−m)!
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3. Vector spaces

Definition 2 (Linear combination) A linear combi-

nation of vectors v1, v2, . . . , vn ∈ R
m is:

α1v1 + α2v2 + · · ·+ αnvn,

where α1, . . . , αn ∈ R are real numbers.

3.1 Linear dependence and independence

Definition 3 The vectors v1, . . . ,vn ∈ R
m are said to

be linearly independent if for every linear combination

such that

α1v1 + · · ·+ αnvn = 0

it implies that α1 = · · · = αn = 0.

Definition 4 The vectors v1, . . . ,vn ∈ R
m are said to

be linearly dependent if there exist α1, · · · , αn ∈ R not

all of them zero, such that α1v1 + · · ·+ αnvn = 0. Ob-

viously, they are not linearly independent.
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3.2 Basis and dimension

Definition 5 A set of vectors S = {v1, . . . ,vp} ⊆ R
m

is said to be a spanning set of R
m if every vector

v ∈ R
m can be represented as a linear combination of

the vectors in S, that is, if there exist α1, . . . , αp ∈ R

such that

v = α1v1 + · · ·+ αpvp.

Definition 6 A collection B = {v1, . . . ,vm} ⊆ R
m of

vectors forms a basis in R
m if the following conditions

hold:

• The vectors of B are linearly independent.

• B is a spanning set in R
m.

There are infinite bases in a vector space. However,
all of them contain the same number of vectors. This
number is the dimension of the vector space.

Theorem 1 Let B = {v1, . . . ,vm} be a basis in R
m.

Then, every vector v ∈ R
m can be expressed as a linear

combination of v1, . . . ,vm, and the coefficients of that

linear combination are unique.

Theorem 2 Given a basis B for Rm and a vector v ∈
R

m, v �∈ B and v �= 0, it is always possible to form

another basis, by replacing a vector in B by the vector

v.
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4. Convex sets

An equation of the form a1x1 + a2x2 = c, where a1, a2
and c are constants, represents a straight line in R

2.

An inequality of the form a1x1 + a2x2 ≤ c is the set of
all points lying on the line a1x1 + a2x2 = c, together
with all those points lying to one side of the line.

x1

x2

2x1 + 3x2 ≤ 6

A half-space of R 2 is the set of all points of R 2 which
satisfies an inequality of the form a1x1 + a2x2 ≤ c or
a1x1+a2x2 ≥ c, where at least one of the constants a1
or a2 is nonzero.

In R
n the equation a1x1+a2x2+· · ·+anxn = c, where a1,

. . . , an, c ∈ R are constants, represents a hyperplane.

A half-space of R n is the set of all points which satisfies

an inequality of the form a1x1 + a2x2 + · · ·+ anxn ≤ c

or a1x1 + a2x2 + · · ·+ anxn ≥ c.
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Definition 7 A subset C of R
n is a convex set if C

is empty, if C contains a single point, or if for every

two distinct points in C, the line segment connecting

them lies entirely in C.

The sets (a), (b) and (c) in the Figure are convex, (d)
is not convex.

(a) (b)

(c) (d)

The following results can be proved: (1) A hyperplane
is a convex set. (2) A half-space is a convex set. (3)
The intersection of a finite number of convex sets is
a convex set.

In linear programming, convex sets such as hyper-
planes, half-spaces and the intersection of a finite num-
ber of convex sets are of special significance, because
they appear in the study of linear models.

The intersection of a finite number of half-spaces is a
convex set of the form (a), where the vertices of the
set are called extreme points.
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5. Extreme points and basic feasible solutions

Consider the following inequations, x1 ≥ 0 and x2 ≥ 0:

−x1 + 4x2 ≤ 4

x1 − x2 ≤ 3

The intersection of the two half-spaces, together with
x1 ≥ 0 and x2 ≥ 0, is a convex set; a polygon in this
case. The polygon has a finite number of vertices:
extreme points.

O

A

B

C x1

x2

−x1 + 4x2 = 4

x1 − x2 = 3

O = (0,0), A = (0,1), B = (16
3
, 7
3
), C = (3,0).
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Convert inequations into equations by adding nonneg-
ative variables x3 and x4.

−x1 + 4x2 + x3 = 4

x1 − x2 + x4 = 3

Compute the basic solutions and choose the ones with
all the variables greater than or equal to zero; we can
confirm that they correspond to the extreme points of
the polygon.

• x3 = x4 = 0, solve −x1 + 4x2 = 4, x1 − x2 = 3:
x1 =

16
3
and x2 =

7
3
. Extreme point B.

• x2 = x4 = 0, solve −x1 + x3 = 4, x1 = 3: x1 = 3
and x3 = 7. Extreme point C.

• x2 = x3 = 0, solve −x1 = 4, x1 + x4 = 3: x1 =
−4 and x4 = 7. It does not correspond to any
extreme point.

• x1 = x4 = 0, solve 4x2 + x3 = 4, −x2 = 3: x2 =
−3 and x3 = 16. It does not correspond to any
extreme point.

• x1 = x3 = 0, solve 4x2 = 4, −x2 + x4 = 3: x2 = 1
and x4 = 4. Extreme point A.

• x1 = x2 = 0, solve x3 = 4, x4 = 3: x3 = 4 and
x4 = 3. Extreme point O.
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