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1. The dual problem

Definition 1 (Maximization symmetric form) A lin-
ear problem is said to be written in maximization sym-
metric form if:

• The objective is in maximization form,

• All the constraints are ≤,

• All variables are nonnegative.

Definition 2 (Minimization symmetric form) A lin-
ear problem is said to be written in minimization sym-
metric form if:

• The objective is in minimization form,

• All the constraints are ≥,

• All variables are nonnegative.
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1.1 Primal-dual relationship

Primal Dual

max z = cTx min G = bTy

subject to subject to

Ax ≤ b ATy ≥ c

x ≥ 0 y ≥ 0

1.2 Primal-dual correspondence

For any primal problem and the corresponding dual
problem, there is a direct correspondence between the
parameters of the problems:

• The primal constraint matrix A is m × n; m con-
straints and n variables. The dual constraint ma-
trix AT is n×m; n constraints and m variables.

• The right hand side vector b of the primal problem
is the vector of cost coefficients of the dual.

• The vector of cost coefficients c of the primal is
the right hand side vector of the dual.

• The number of constraints of the primal is equal
to the number of variables of the dual.

• The number of variables of the primal is equal to
the number of constraints of the dual.

OpenCourseWare, UPV/EHU, Operations Research. Linear Programming. 3.3



1.3 Duality. The general case

Objective function: max ⇐⇒ Objective function: min

ith constraint is ≤ bi ⇐⇒ ith variable is ≥ 0

ith constraint is = bi ⇐⇒ ith var. is unrestricted

ith constraint is ≥ bi ⇐⇒ ith variable is ≤ 0

ith variable is ≥ 0 ⇐⇒ ith constraint is ≥ bi

ith var. is unrestricted ⇐⇒ ith const. is = bi

ith variable is ≤ 0 ⇐⇒ ith constraint is ≤ bi

2. Duality proofs

All theorems are stated for the primal-dual symmetric
forms.

Theorem 1 The dual of the dual is the primal.

Theorem 2 (Weak duality) Let x and y be any fea-
sible solutions to the primal and dual problems, respec-
tively. The following inequality holds:

z = cTx ≤ bTy = G.
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Corollary 1 If x∗ and y∗ are feasible solutions to the
primal and dual problem such that

cTx∗ = bTy∗

holds, then x∗ and y∗ are optimal solutions to the pri-
mal and dual problems respectively.

Corollary 2 If the primal problem is feasible and un-
bounded, the dual problem is infeasible.

Corollary 3 If the dual problem is feasible and un-
bounded, the primal problem is infeasible.

If the primal problem is infeasible, the dual problem
may be either infeasible or unbounded.

If the dual problem is infeasible, the primal problem
may be either infeasible or unbounded.

Theorem 3 (The fundamental principle of duality)
If an optimal solution x∗ to the primal problem exists,
then an optimal solution y∗ to the dual problem exists.
Similarly, if an optimal solution y∗ to the dual prob-
lem exists, then an optimal solution x∗ to the primal
problem exists. In both cases,

z∗ = cTx∗ = bTy∗ = G∗

holds.
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3. The principle of complementary slack-
ness

We can use the primal optimal solution to solve the
corresponding dual problem, and viceversa

Theorem 4 (Complementary slackness) Any feasi-
ble solutions to the primal and dual problems x∗ and
y∗ are optimal if and only if the following holds:

x∗T(ATy∗ − c) + y∗T(b−Ax∗) = 0.

3.1 Interpretation of the complementary slackness
conditions

• x∗ > 0 ⇒ ATy∗ − c = 0.

• Ax∗ < b ⇒ y∗ = 0.

• y∗ > 0 ⇒ Ax∗ − b = 0.

• ATy∗ > c ⇒ x∗ = 0.
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4. The optimal solution to the dual prob-

lem

Theorem 5 Consider the symmetric form of duality,
and let B be an optimal basis for the primal problem.
Then,

y∗T = cTBB
−1

is an optimal solution to the dual problem.

4.1 A solution to the dual problem in the tableau

The reduced cost coefficients zj − cj are computed as
follows:

zj − cj = cTBB
−1aj − cj.

If we compute all the zj − cj of the vectors aj that
correspond to the initial identity matrix I, we get:

cTBB
−1I− cTI = cTBB

−1 − cTI .

We need to add cTI to the reduced cost coefficients in
the columns of the initial identity matrix to obtain a
solution to the dual problem.

Two cases may be distinguished:

• If the columns of matrix I correspond to slack
variables, then cI = 0 holds.

• If there are artificial variables in the columns cor-
responding to the initial matrix I, then the cost
coefficients of the artificial variables are M , and
they appear in vector cI, due to the penalty of the
objective function.
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5. Economic interpretation of duality

5.1 Shadow prices

A linear model and its optimal basis B, x∗ and z∗. The
dual optimal solution y∗ and G∗.

If the right-hand-side vector b changes to b + Δb,
assuming that the current basis remains optimal,

•
∧
xB= B−1(b+Δb) = xB +B−1Δb.

• zj − cj = cTBB
−1aj − cj.

•
∧
G

∗

= y∗T(b+Δb) = y∗Tb+y∗TΔb = G∗+y∗TΔb =
z∗ + y∗TΔb.

Assume that Δbi = 1 and all the rest are zero. The
optimal value of the dual variable y∗i is the rate of
change (increase) of the optimal objective value.

y∗TΔb = (y∗1, . . . , y∗i , . . . , y∗m)
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= y∗i .

Definition 3 (Shadow price) The optimal dual vari-
able y∗i is said to be the shadow price of the ith right-
hand-side value, i = 1, . . . , m, if increasing/decreasing
a unit in the ith right-hand-side value, and keeping the
rest of the right-hand-side values unchanged, does not
violate the optimality of the tableau.
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5.2 The economic cost of the primal variables and
the interpretation of the simplex method

Example.

Products Resource

Resource 1 2 3 4 available

A 2 3 3
2

4 300

B 2 4 3 1 500

C 5 1 2 2 250

Profit 4 3 6 2

xj: the units of product j produced, j = 1,2,3,4.

y1, y2, y3: the price to pay for a unit of each of the
resources A, B and C, respectively.

max z = 4x1 + 3x2 + 6x3 + 2x4 min G = 300y1 + 500y2 + 250y3

subject to subject to

2x1 + 3x2 +
3
2
x3 + 4x4 ≤ 300 2y1 + 2y2 + 5y3 ≥ 4

2x1 + 4x2 + 3x3 + x4 ≤ 500 3y1 + 4y2 + y3 ≥ 3

5x1 + x2 + 2x3 + 2x4 ≤ 250 3
2
y1 + 3y2 + 2y3 ≥ 6

x1, x2, x3, x4 ≥ 0 4y1 + y2 + 2y3 ≥ 2

y1, y2, y3 ≥ 0

zj − cj = cTBB
−1aj − cj = yTaj − cj =

m
�

i=1

aijyi − cj.

zj−cj < 0 is the jth dual constraint

m
�

i=1

aijyi < cj, which

means that when zj − cj < 0, the economic cost of the
production of j is lower than the profit cj associated to
its production, and thus, the production of j becomes
profitable.
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6. The dual simplex method

Write the model in maximization symmetric form. Ba-
sis B = I formed by slack variables.

6.1 The dual simplex algorithm

The objective is to maximize.

* Step 1. Construct the initial tableau, where zj −
cj ≥ 0 for all j.

* Step 2. With regard to primal feasibility, there
are two cases to consider.

• If xBi ≥ 0, i = 1, . . . ,m, the current solution
is optimal. Stop.

• If there exists xBi < 0, then the dual solution
may be improved. Go to Step 3.

* Step 3. Basis modification.

• Leaving vector: ar. Pivot row: the rth row.

xBr = min
i

{ xBi / xBi < 0 }.

• Entering vector: ak. Pivot column: the kth.

zk − ck

yrk
= max

j

�

zj − cj

yrj
/ yrj < 0

�

.

yrk is the pivot element.

If yrj ≥ 0 for all j , the problem is infeasible. Stop.

* Step 4. Compute the new tableau by pivoting in
the same way as stated in the simplex algorithm.
Go to Step 2.
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7. The artificial constraint technique

When the initial tableau is not dual feasible, an artifi-
cial constraint is added to the model:

�

j∈N

xj ≤ M,

where N is the set of variables such that the reduced
cost coefficients zj−cj are negative in the initial tableau.

7.1 The effect of the artificial constraint

The introduction of the artificial constraint to the
model should never modify the feasible region of the
original model. M must be positive and as large as
necessary.

x1

x2

x1 + x2 = M
opt

(x∗
1, x

∗
2)
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If M is not large enough, some points in the feasible
region are discarded, because the artificial constraint
eliminates them.

x1

x2

x1 + x2 = M

(x∗
1, x

∗
2)

opt

When the feasible region of the problem is unbounded,
the artificial constraint bounds it, even if M is large.

x1

x2

x1 + x2 = M

opt
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7.2 The dual simplex algorithm with artificial con-
straint

Write the model in maximization symmetric form. Ba-
sis B = I formed by slack variables. The objective is
to maximize.

* Step 1. Construct the initial tableau.

* Step 2. With regard to the dual feasibility,

• If zj − cj ≥ 0 holds for all j, then go to Step 3.

• If there exists at least a column such that
zj − cj < 0, then add an artificial constraint
to the model and construct the initial tableau
for the model with the additional constraint.
The entering vector ak is selected as follows:

zk − ck = min
j

{ zj − cj / zj − cj < 0 }.

Column k is the pivot column. Select the slack
vector of the artificial constraint to leave the
basis; the corresponding row is the pivot row.
Compute the new tableau by pivoting in the
same way as stated in the simplex algorithm.
The new tableau is dual feasible. Go to Step
3.

* Step 3. Primal feasibility.

• If the model has no additional artificial con-
straint,

* If xBi ≥ 0 for all i, then the solution is opti-
mal. Stop.

* If there exists at least a row i such that
xBi < 0, then the solution may be improved.
Go to Step 4.
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• If the model has an additional artificial con-
straint,

* If xBi ≥ 0 for all i, and the slack variable of
the artificial constraint is basic and positive,
then the solution is optimal. Stop.

* If xBi ≥ 0 for all i, and the slack variable of
the artificial constraint is nonbasic, or it is
basic and has value zero, then the problem
is unbounded. Stop.

* If there exists at least a row i such that
xBi < 0, then the solution may be improved.
Go to Step 4.

* Step 4. Basis modification.

• Select a vector ar to leave the basis:

xBr = min
i

{ xBi / xBi < 0 }.

The rth row is the pivot row.

• Select a vector ak to enter the basis:

zk − ck

yrk
= max

j

�

zj − cj

yrj
/ yrj < 0

�

.

The kth column is the pivot column. yrk is the
pivot element. Go to Step 5.

If yrj ≥ 0 for all j in the pivot row, the problem
is infeasible. Stop.

* Step 5. Compute the new tableau by pivoting in
the same way as stated in the simplex algorithm.
Go to Step 3.
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