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THE SIMPLEX METHOD

Standard form.

Assuming that the right-hand-side vector is

nonnegative,b ≥ 0,

max(min)z = cTx

subject to

Ax = b

x ≥ 0
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1. Model manipulation

To transform any linear model into the standard form:

1. The objective function.

min z =

n
�

j=1

cjxj ⇐⇒ max (−z) =

n
�

j=1

−cjxj.

2. Constraints.

(a)

n
�

j=1

aijxj ≥ bi ⇐⇒

n
�

j=1

−aijxj ≤ −bi.

(b)

n
�

j=1

aijxj ≤ bi ⇐⇒

n
�

j=1

aijxj + y = bi, y ≥ 0.

n
�

j=1

aijxj ≥ bi ⇐⇒

n
�

j=1

aijxj − y = bi, y ≥ 0.

(c)

n
�

j=1

aijxj = bi ⇐⇒

n
�

j=1

aijxj ≤ bi,

n
�

j=1

aijxj ≥ bi.

3. Variables.

• If xj ≤ 0, then xj = −x�
j, where x�

j ≥ 0.

• If xj is unrestricted in sign, then

xj = x�
j − x��

j , where x�
j, x

��
j ≥ 0.
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2. Solving linear models

• x is a solution if it satisfies Ax = b.

• A solution x is feasible if x ≥ 0.

• Let B be a basic matrix constituted by extracting
m columns out of A. xB is a basic solution if

BxB = b.

All nonbasic variables are zero, xN = 0. If xB ≥ 0
then it is a basic feasible solution.

• A basic feasible solution is degenerate if at least
one component of xB is zero.

• The set of all feasible solutions of a linear problem
is the feasible region or the convex set of feasible
solutions, and it is noted by F .

• x∗ denotes the optimal solution, and z∗ = cTx∗ the
optimal objective value.

• A linear model is unbounded if there exists no
finite optimal value for the objective function,

z∗ → +∞ or z∗ → −∞.

• A model has multiple optimal solutions if it has
more than one optimal solution.
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3. Extreme points and basic feasible so-
lutions

Theorem 1 Consider a linear model in standard form:

max z = cTx

subject to

Ax = b

x ≥ 0

x is a basic feasible solution if and only if x is an

extreme point of F .

Theorem 2 Consider a linear model in standard form:

max z = cTx

subject to

Ax = b

x ≥ 0

The optimal value of the objective function is obtained

at an extreme point of the feasible region F .
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Example. Consider the following linear model:

max z = x1 + 2x2

subject to

−x1 + 4x2 ≤ 4

x1 − x2 ≤ 3

x1, x2 ≥ 0

x1

x2

−x1 + 4x2 = 4

x1 − x2 = 3

A

B

CO

max

O = (0, 0) , A = (0, 1) , B =
�

16
3
, 7

3

�

, C = (3, 0).
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The linear model in standard form:

max z = x1 + 2x2 + 0x3 + 0x4

subject to

−x1 + 4x2 +x3 = 4

x1 − x2 +x4 = 3

x1, x2, x3, x4 ≥ 0

The algebraic calculation of two basic solutions:

• Basis B = (a1 a2).

xB =





−1 4

1 −1





−1 



4

3



 =





16
3

7
3





The basic solution is feasible, and it corresponds
to the extreme point B.

• Basis B = (a1 a4).

xB =





−1 0

1 1





−1 



4

3



 =





−4

7





This basic solution is not feasible, because there
are negative components. Thus, it does not cor-
respond to any extreme point in the graphical rep-
resentation.
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4. The simplex method

4.1 Definitions and notation

Assume there are m linearly independent rows and n
columns in matrix A, n > m.

Let B be a basis formed by m linearly independent
columns of A (assume they are the first m columns).

max z = (cTB | cTN)









xB

−

xN









subject to

(B | N)









xB

−

xN









= b

xB,xN ≥ 0

The linear model can be written as:

max z = cTBxB + cTNxN

subject to

BxB + NxN = b

xB,xN ≥ 0
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• Basic solution. By setting xN = 0, the system of
linear equations is:

BxB = b → xB = B−1b where xB =















xB1

xB2

...

xBm















.

• Objective value. Let cTB = (cB1, cB2, . . . , cBm),

z = cTBxB = (cB1, cB2, . . . , cBm)















xB1

xB2

...

xBm















=

m
�

i=1

cBixBi.

• Coordinate vector. aj = Byj → yj = B−1aj.

aj = y1ja1 + y2ja2 + · · · + ymjam =

m
�

i=1

yijai.

• Reduced cost coefficients zj − cj. The scalar zj.

zj = cTByj = cB1y1j+cB2y2j+· · ·+cBmymj =

m
�

i=1

cBiyij.
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4.2 Improvement of a basic feasible solution

Theorem 3 Consider a linear model in maximization

standard form. Let B be a basis formed by columns of

A, and let xB = B−1b be the basic feasible solution rel-
ative to B, and z = cTBxB the corresponding objective

value.

If there exists a nonbasic vector aj in matrix A such

that zj − cj < 0 and for such vector aj there exists a
positive coordinate yij, i = 1, . . . ,m, then there exists

another basic feasible solution
∧
xB, where

∧
z =

∧
c
T

B

∧
xB ≥ z = cTBxB.

4.3 Selection of entering and leaving vectors

• Entering vector rule. Select ak to enter the basis,
where

zk − ck = min
j

{zj − cj/zj − cj < 0}

The rule guarantees that
∧
z≥ z.

• Leaving vector rule. Select ar to leave the basis,
where

xBr

yrk
= min

i

�

xBi

yik
/yik > 0

�

The rule guarantees that
∧
xB≥ 0.

OpenCourseWare, UPV/EHU, Operations Research. Linear Programming. 2.10



4.4 Rules to compute
∧
xB and

∧
z

• Calculation of the new basic feasible solution:

∧
xB=











xBi − xBr
yik

yrk
xBr

yrk

i �= r

i = r

• Calculation of the new objective value:

∧
z= z −

xBr

yrk
(zk − ck)

Theorem 4 (Optimality condition). Consider a lin-
ear model in standard form.

max z = cTx

subject to

Ax = b

x ≥ 0

Let B be a basis formed by columns of A, and let
xB = B−1b be its corresponding basic feasible solution,
and z = cTBxB its objective value.

If zj − cj is greater than or equal to zero for every
vector aj of matrix A, then xB is an optimal basic

feasible solution to the model.
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4.5 Unbounded solution

Theorem 5 Consider a linear model in maximization

standard form. Let B be a basis formed by columns

of A, and let xB = B−1b be its corresponding basic

feasible solution, and z = cTBxB its objective value.

If there exists a nonbasic vector ak in matrix A such

that zk − ck < 0, and for such vector ak all coordinates
yik are less than or equal to zero, i = 1, . . . ,m, then
the solution to the model is unbounded.

4.6 Multiple optimal solutions

Theorem 6 Consider a linear model in maximization

standard form. Let B be a basis formed by columns

of A, and let xB = B−1b be its corresponding basic

feasible solution, and z = cTBxB its objective value.

If zj−cj ≥ 0 holds for every vector aj of matrix A, then
the solution xB is optimal. Moreover, if there exists a

nonbasic vector ak such that zk − ck = 0, and at least
one coordinate yik > 0, i = 1, . . . ,m, then there exist
multiple optimal solutions.
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Theorem 7 Consider a linear model in maximization

standard form. Let x1, . . . ,xp be optimal basic feasible

solutions of the model. Then, every generalized con-

vex linear combination of them is an optimal feasible

solution of the model.

Theorem 8 Let us consider a linear model in maxi-

mization standard form. Let B be a basis formed by

columns of A, and let xB = B−1b be its correspond-
ing basic feasible solution, and z = cTBxB its objective

value. If zj − cj ≥ 0 holds for every vector aj of matrix
A, then the solution xB is optimal.

If there exists a nonbasic vector ak in matrix A such

that zk − ck = 0, and for such vector ak all coordinates
yik are less than or equal to zero, i = 1, . . . ,m, then
there are multiple optimal solutions with unbounded

variables.
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4.7 The initial basic feasible solution

Relative to the canonical basis. Two cases:

An initial canonical basis formed by slack variables

max z = cTx max z = cTx + 0Ty

subject to → subject to

Ax≤b Ax+Iy =b

x ≥ 0 x,y ≥ 0

• Calculation of the basic solution. It is feasible.

xB = B−1b = Ib = b ≥ 0.

• Calculation of the objective value. As all vectors
in the initial canonical basis B correspond to slack
variables, cTB = 0 holds.

z = cTBxB = 0TxB = 0.

• Coordinate vectors.

yj = B−1aj = Iaj = aj.

• Calculation of the reduced cost coefficients zj −
cj. As all vectors in the initial canonical basis B
correspond to slack variables, cTB = 0 holds.

zj − cj = cTByj − cj = 0 − cj = −cj.
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Artificial variables in the initial basis

If once the model is in standard form matrix A has no
identity submatrix, then we introduce artificial vari-
ables to find a starting canonical basis and its corre-
sponding basic feasible solution. Example:

max z = 3x1 + x2

subject to

x1 + x2 ≤ 3

x1 + 2x2 ≥ 2

x1, x2 ≥ 0

Add the slack variable x3, subtract x4 and add an ar-
tificial variable, w1 ≥ 0 to get a canonical basis.

x1 + x2 +x3 = 3

x1 + 2x2 −x4 + w1 = 2

The basic feasible solution relative to the canonical
basis B = (a3 aw1):

xB = B−1b =





1 0

0 1









3

2



 =





3

2



≥ 0.

However, xB is not a solution to the initial linear model,
because the artificial variable w1 = 2 > 0; constraint
x1 + 2x2 − x4 = 2 does not hold.
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4.8 The simplex tableau

In the process of computing the optimal solution to
a linear model in standard form, all the calculations
that correspond to each of the bases are gathered in
a tableau: the simplex tableau.

Original variables Auxiliary variables

x1 . . . xn xn+1 . . . xj . . .

z1 − c1 . . . zn − cn zn+1 − cn+1 . . . zj − cj . . . z

cB1 aB1 y11 . . . y1n y1,n+1 . . . y1,j . . . xB1
...

...
...

...
...

cBi aBi yi1 . . . yin yi,n+1 . . . yi,j . . . xBi
...

...
...

...
...

cBm aBm ym1 . . . ymn ym,n+1 . . . ym,j . . . xBm

If the initial canonical basis B is formed by just slack
variables, the simplex tableau can be written like this:

x1 x2 . . . xn xn+1 xn+2 . . . xn+m

cTBB
−1A− cT cTBB

−1 cTBxB

cB B B−1A B−1 xB

OpenCourseWare, UPV/EHU, Operations Research. Linear Programming. 2.16



5. The Big-M method

By introducing artificial variables to a linear model, we
change the problem. In order to return to the original
problem, we must force artificial variables to zero.

The Big-M method consists in penalizing the artificial
variables in the objective function

Example:

max z = −5x1 + 6x2 + 7x3 + 0x4 + 0x5−Mw1 −Mw2

subject to

2x1 + 10x2 − 6x3 −x4 +w1 = 30

5
2
x1 − 3x2 + 5x3 +x5 = 10

2x1 + 2x2 + 2x3 +w2 = 5

x1, x2, x3, x4, x5, w1, w2 ≥ 0

Add w1, w2 to obtain the initial B = I, and penalize
them in the objective function. The simplex tableau:

x1 x2 x3 x4 x5 w1 w2

−4M + 5 −12M − 6 4M − 7 M 0 0 0 −35M

−M aw1 2 10 −6 −1 0 1 0 30

0 a5
5
2

−3 5 0 1 0 0 10

−M aw2 2 2 2 0 0 0 1 5
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6. The simplex algorithm

Write the model in maximization standard form.

* Step 1. Construct the initial simplex tableau.

* Step 2.

• If there exists zj − cj < 0, then the solution
may be improved. Go to Step 4.

• If zj − cj ≥ 0 for every vector aj of matrix A,
then go to Step 3.

* Step 3.

• If there exists an artificial variable with a posi-
tive value then the problem is infeasible. Stop.

• If there is no artificial variable in the basis,
then the solution xB in the tableau is optimal.

* zj−cj ≥ 0 holds for every vector aj of matrix
A. If zj − cj > 0 for every nonbasic vector
aj, then xB is the unique optimal solution.
Stop.

* zj − cj ≥ 0 holds for every vector aj. If
there exists a nonbasic vector ak such that
zk − ck = 0, and at least one of its coordi-
nates yik is greater than zero, i = 1, . . . ,m,
then another basic feasible solution can be
computed. The problem has multiple opti-
mal solutions. Go to Step 5.

* zj − cj ≥ 0 holds for every vector aj. If there
exists a nonbasic vector ak such that zk −
ck = 0, and if yik ≤ 0, i = 1, . . . ,m holds
for such vector ak, then the problem has
multiple optimal solutions, but they are not
basic solutions. Stop.
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* Step 4.

• If there exists an aj such that zj − cj < 0, and
yj ≤ 0, then the solution is unbounded. Stop.

• If there exists an aj such that zj − cj < 0, and
there exists at least a coordinate greater than
zero in vector yj, then go to Step 5.

* Step 5. Select an entering vector ak and a leaving
vector ar, according to the following rules:

• Vector ak is selected to enter the basis, such
that:

zk − ck = min
j

{ zj − cj / zj − cj ≤ 0 }.

The kth column is called the pivot column.

• Vector ar is selected to leave the basis, such
that:

xBr

yrk
= min

i

�

xBi

yik
/ yik > 0

�

.

The rth row is called the pivot row.

The coordinate yrk is called the pivot element.

* Step 6. Update the tableau.

• The new pivot row is computed by dividing the
current pivot row by the pivot element yrk.

• To update all other rows i: the new row is
equal to the current row − the row multiplier
× the current pivot row. The multiplier for
row i: mi = yik

yrk
, i = 1, . . . ,m, i �= r.

Go to Step 2.
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8. The two-phase method

Analog to the Big-M method. The aim of the two
methods is to reach an optimal solution where all the
artificial variables are zero.

The two-phase method minimizes the sum of the ar-
tificial variables in a first phase.

* Phase 1. The constraints of the linear model
are considered, but a new objective function is
defined: to minimize the sum of the artificial vari-
ables. The simplex algorithm is applied. Two
cases may arise:

• If the optimal objective function value is greater
than zero, then the original linear model is in-
feasible.

• Otherwise, the original linear model is feasible.
Go to Phase 2.

* Phase 2. The original objective function is op-
timized. Take the optimal tableau obtained in
Phase 1 as starting point. The artificial variables
are discarded. The reduced cost coefficients zj−cj
must be updated. Apply the simplex algorithm.
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9. The revised simplex method

Given a linear model in standard form, B and xB,

max z = cTx

subject to

Ax = b

x ≥ 0

Vector ak enters the basis, zj − cj = cTBB
−1aj − cj.

zk − ck = min
j

{ zj − cj / zj − cj ≤ 0 }.

By using the coordinates yk = B−1ak and xB, vector ar
is selected to leave the basis.

xBr

yrk
= min

i

�

xBi

yik
/ yik > 0

�

.

We need to know the inverse basis B−1 to make all
the necessary calculations. All the rest are known pa-
rameters, present in the linear model.

We just need a reduced tableau.

xn+1 xn+2 . . . xn+m

cTBB
−1 cTBxB

cB B B−1 xB
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10. Some remarks

1. Round-off errors. Computers can carry only a
limited number of decimal places of accuracy, and so,
computations involving real numbers are approximate,
and the errors tend to accumulate. If the error be-
comes significant, the optimal basic feasible solution
obtained may not satisfy the constraints, or if it does,
it may not be the optimal solution.

2. Artificial variables in the optimal basis. In some
cases, once the simplex algorithm has reached the op-
timal tableau, and even though we may force the arti-
ficial variables to zero, one or more of these variables
may still be basic. This fact can show two different
situations: either there are redundant constraints in
the model, or the solution is degenerate.

3. Cycling. If the solution is degenerate, it may cause
the algorithm to cycle and iterate indefinitely without
ever reaching termination but simply switching from
one basis to another. This may happen if ties at the
leaving vector rule are not correctly broken.

4. Computational complexity of the simplex al-
gorithm. In most of the cases, the algorithm is ob-
served to take 3m

2
iterations, being A an m×n matrix.

This means that the convergence of the algorithm is
more sensitive to the number of constraints than to
the number of variables of the model.
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