1.LINEAR MODELING. GRAPHICAL SOLUTION

- 1. The linear model
- 2. Notation
- 3. Linear programming modeling
 - 3.1 A transportation problem
 - 3.2 A production problem
 - 3.3 A product-mix problem
 - 3.4 A diet problem
 - 3.5 A cutting problem
- 4. Graphical solution
 - 4.1 A problem with a unique optimal solution
 - 4.2 A problem with multiple optimal solution
 - 4.3 An infeasible problem
 - 4.4 An unbounded feasible region. Unbounded solution
 - 4.5 An unbounded region. A bounded solution

1.1

1. The linear model

A linear model deals with optimizing a linear function with several variables, given certain linear constraint inequalities.

opt
$$z = \mathbf{c}^T \mathbf{x}$$
 (1)

subject to

$$\begin{array}{ll} \mathbf{Ax} \stackrel{\leq}{>} \mathbf{b} & (2) \\ \mathbf{x} \geq \mathbf{0} & (3) \end{array}$$

where,

- (1) is the objective function,
- (2) are the constraints and
- (3) are the nonnegativity constraints.

The elements that appear in the model are:

- x: is the vector of decision variables.
- \mathbf{c}^T : is the vector of cost coefficients.
- b: is the right-hand-side vector.
- A: is the constraint matrix.

 \mathbf{c}^{T} , \mathbf{b} and \mathbf{A} are known parameters; \mathbf{x} contains the variables whose values have to be determined.

2. Notation

1.

opt $z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ subject to $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \stackrel{\leq}{>} b_1$ $a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \stackrel{\leq}{>} b_2$ $\vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots$ $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \stackrel{\leq}{>} b_m$ $x_1, x_2, \dots, x_n \ge 0$

2. opt
$$z = (c_1, \dots, c_n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

subject to

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \stackrel{\leq}{=} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$
$$(x_1, x_2, \cdots, x_n)^T \ge (0, 0, \cdots, 0)^T$$

3.

opt
$$z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

subject to
 $\mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + \dots + \mathbf{a}_n x_n \stackrel{\leq}{>} \mathbf{b}$
 $x_j \ge 0 \ , \ j = 1, \dots, n$

3. Linear programming modeling

3.1 A transportation problem

A company produces bicycles at three plants in cities C_1, C_2 and C_3 . Their production capacity is 1000, 2100 and 1500 bicycles per month, respectively. Four customers, A, B, C and D, from four different locations are demanding 800, 1100, 900 and 1300 bicycles, respectively, every month. The unit costs of transporting a bicycle from a given city to a given customer:

	A	В	C	D
C_1	10	8	10	13
C_2	19	6	15	16
C_3	14	8	9	6

The minimum-cost shipping must be found.

Decision variables.

 x_{ij} : number of bicycles transported monthly from city C_i to customer j, i = 1, 2, 3, j = A, B, C, D.

Linear model.

 $\begin{array}{ll} \min \ z = 10x_{1A} + 8x_{1B} + 10x_{1C} + 13x_{1D} + 19x_{2A} + 6x_{2B} + \\ 15x_{2C} + 16x_{2D} + 14x_{3A} + 8x_{3B} + 9x_{3C} + 6x_{3D} \\ \text{subject to} \\ & x_{1A} + x_{1B} + x_{1C} + x_{1D} \leq 1000 \\ x_{2A} + x_{2B} + x_{2C} + x_{2D} \leq 2100 \\ x_{3A} + x_{3B} + x_{3C} + x_{3D} \leq 1500 \\ & x_{1A} + x_{2A} + x_{3A} \geq 800 \\ & x_{1B} + x_{2B} + x_{3B} \geq 1100 \\ & x_{1C} + x_{2C} + x_{3C} \geq 900 \\ & x_{1D} + x_{2D} + x_{3D} \geq 1300 \end{array}$

$$x_{ij} \ge 0, \quad i = 1, 2, 3, \quad j = A, B, C, D$$

3.2 A production problem

Pieces P_1 , P_2 and P_3 are manufactured by using machines A, B and C. The number of hours each machine is available for manufacturing and the production cost:

	Availability	Production cost		
Machine	(hours/week)	(euro/hour)		
A	1000	6		
В	1000	4		
C	1000	5		

Each type of piece needs a different amount of processing time in each of the machines:

Machine	P_1	P_2	<i>P</i> ₃
A	1	2	3
В	2	3	1
C	1	1	1

The availability of materials M_1 and M_2 used in the production process: 1000 kg and 1200 kg, respectively. The amount of material needed in the production of one piece of each type:

Piece	M_1 (kg/piece)	M_2 (kg/piece)
P_1	1	2
P ₂	1	3
<i>P</i> ₃	3	1

1 kg of material M_1 costs 1.5 euros and 1 kg of material M_2 3 euros. Each piece is sold at the price of 50, 56 and 70 euros, respectively.

The firm aims to find the maximum benefit production.

Decision variables.

 x_j : number of pieces P_j that the firm will produce weekly, j = 1, 2, 3.

Objective function. To maximize benefit.

Benefit = Selling price - Materials cost - Production cost.

- * Selling price = $50x_1 + 56x_2 + 70x_3$
- * Materials cost = $(1 \times 1.5 + 2 \times 3)x_1 + (1 \times 1.5 + 3 \times 3)x_2 + (3 \times 1.5 + 1 \times 3)x_3$
- * Production cost = $(1 \times 6 + 2 \times 4 + 1 \times 5)x_1 + (2 \times 6 + 3 \times 4 + 1 \times 5)x_2 + (3 \times 6 + 1 \times 4 + 1 \times 5)x_3$

Linear model.

$$\begin{array}{l} \max \ z = 23.5x_1 + 16.5x_2 + 35.5x_3\\ \text{subject to}\\ x_1 + 2x_2 + 3x_3 \leq 1000\\ 2x_1 + 3x_2 + x_3 \leq 1000\\ x_1 + x_2 + x_3 \leq 1000\\ x_1 + x_2 + 3x_3 \leq 1000\\ 2x_1 + 3x_2 + x_3 \leq 1200\\ 2x_1 + 3x_2 + x_3 \leq 1200\\ x_1, x_2, x_3 \geq 0 \end{array}$$

3.3 A product-mix problem

A fuel company produces two types of fuel, A and B by mixing three types of crude oil.

The following table shows the number of crude oil barrels available and the cost of each barrel:

	Barrels available	Cost
Crude oil O_1	2000	10
Crude oil O_2	3000	8
Crude oil O_3	1000	12

The quality of fuels A and B is considered to be acceptable if:

- At least 30% of fuel A is crude oil O_1 , at least 20% crude oil O_2 and no more than 30% crude oil O_3 .
- At least 25% of the composition of fuel B must be crude oil O_1 , at least 25% crude oil O_2 , and at least 25% crude oil O_3 .

The selling prices of a barrel of fuel A and fuel B are 40 and 35 units, respectively.

The aim is to organize the fuel production in order to obtain the maximum benefit.

1.7

Decision variables.

 x_{ij} : The amount of barrels of crude oil O_i in the composition of fuel j, i = 1, 2, 3, j = A, B.

Objective function. To maximize benefit: "Selling price (SP)" - "Production cost (PC)". $SP = 40(x_{1A} + x_{2A} + x_{3A}) + 35(x_{1B} + x_{2B} + x_{3B})$ $PC = 10(x_{1A} + x_{1B}) + 8(x_{2A} + x_{2B}) + 12(x_{3A} + x_{3B})$

Linear model.

max $z = 30x_{1A} + 32x_{2A} + 28x_{3A} + 25x_{1B} + 27x_{2B} + 23x_{3B}$ subject to

$$\begin{aligned} x_{1A} + x_{1B} &\leq 2000 \\ x_{2A} + x_{2B} &\leq 3000 \\ x_{3A} + x_{3B} &\leq 1000 \\ x_{1A} &\geq \frac{30}{100} (x_{1A} + x_{2A} + x_{3A}) \\ x_{2A} &\geq \frac{20}{100} (x_{1A} + x_{2A} + x_{3A}) \\ x_{3A} &\leq \frac{30}{100} (x_{1A} + x_{2A} + x_{3A}) \\ x_{1B} &\geq \frac{25}{100} (x_{1B} + x_{2B} + x_{3B}) \\ x_{2B} &\geq \frac{25}{100} (x_{1B} + x_{2B} + x_{3B}) \\ x_{3B} &\geq \frac{25}{100} (x_{1B} + x_{2B} + x_{3B}) \\ x_{3B} &\geq \frac{25}{100} (x_{1B} + x_{2B} + x_{3B}) \\ x_{ij} &\geq 0, \quad i = 1, 2, 3, \quad j = A, B \end{aligned}$$

3.4 A diet problem

Diet: at least 25 milligrams of vitamin A, between 25 and 30 milligrams of vitamin B, at least 22 milligrams of vitamin C and no more than 17 milligrams of vitamin D.

· · · · · · · · · · · · · · · · · · ·						
	Vitamins (mg/g)				Cost	
Food	A	B	C	D	(euro/g)	
F_1	2	1	0	1	0.014	
F_2	1	2	1	2	0.009	
F_3	1	0	2	0	0.013	
F_4	1	2	1	1	0.016	

The minimum cost diet which satisfies the nutritional requirements must be found.

Decision variables.

 x_j : grams of each type of food F_j included in the diet, j = 1, 2, 3, 4.

Linear model.

min $z = 0.014x_1 + 0.009x_2 + 0.013x_3 + 0.016x_4$ subject to

$$2x_1 + x_2 + x_3 + x_4 \ge 25$$

$$x_1 + 2x_2 + 2x_4 \ge 25$$

$$x_1 + 2x_2 + 2x_4 \le 30$$

$$x_2 + 2x_3 + x_4 \ge 22$$

$$x_1 + 2x_2 + x_4 \le 17$$

$$x_j \ge 0, \ j = 1, 2, 3, 4$$

3.5 A cutting problem

5m long wooden sticks must be cut. Demands: 100 3m long sticks, 100 2m long sticks, 300 1.5m long ones and 150 1m long sticks. The enterprise wants to minimize the waste incurred in meeting the customer demands.

7 different ways to cut the sticks:

Cutting	Length			
option	3m	2m	1.5m	1m
1	1	1	0	0
2	1	0	0	2
3	0	2	0	1
4	0	1	2	0
5	0	1	0	3
6	0	0	2	2
7	0	0	0	5

Decision variables.

 x_j : number of 5m long sticks cut according to cutting option j, j = 1, ..., 7.

Linear model.

min
$$z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$$

subject to
 $x_1 + x_2 \ge 100$
 $x_1 + 2x_3 + x_4 + x_5 \ge 100$
 $2x_4 + 2x_6 \ge 300$
 $2x_2 + x_3 + 3x_5 + 2x_6 + 5x_7 \ge 150$
 $x_j \ge 0, \ j = 1, \dots, 7$

4. Graphical solution

4.1 A problem with a unique optimal solution

$$\begin{array}{l} \max \ z = 6x_1 + 3x_2 \\ \text{subject to} \\ 2x_1 + 4x_2 \leq 8 \\ -x_1 + 4x_2 \leq 4 \\ x_1 - x_2 \leq 2 \\ x_1, x_2 \geq 0 \end{array}$$

4.2 A problem with multiple optimal solutions

$$\begin{array}{l} \max \ z = x_1 + x_2 \\ \text{subject to} \\ x_1 + x_2 \leq 8 \\ -4x_1 + 4x_2 \leq 8 \\ 2x_1 - x_2 \leq 6 \\ x_1, x_2 \geq 0 \end{array}$$

4.3 An infeasible problem

max
$$z = x_1 + x_2$$

subject to
 $2x_1 + x_2 \le 5$
 $x_1 - x_2 \ge 4$
 $x_1, x_2 \ge 0$

4.4 An unbounded feasible region. Unbounded solution

max
$$z = x_1 + 2x_2$$

subject to
 $x_1 + 2x_2 \ge 2$
 $-2x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

4.5 An unbounded region. A bounded solution

min
$$z = x_1 + 2x_2$$

subject to
 $x_1 + 2x_2 \ge 2$
 $-2x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

