1.LINEAR MODELING. GRAPHICAL SOLUTION

1. The linear model
2. Notation
3. Linear programming modeling
3.1 A transportation problem
3.2 A production problem
3.3 A product-mix problem
3.4 A diet problem
3.5 A cutting problem
4. Graphical solution
4.1 A problem with a unique optimal solution
4.2 A problem with multiple optimal solution
4.3 An infeasible problem
4.4 An unbounded feasible region. Unbounded soIution
4.5 An unbounded region. A bounded solution

1. The linear model

A linear model deals with optimizing a linear function with several variables, given certain linear constraint inequalities.

$$
\begin{equation*}
\text { opt } z=\mathbf{c}^{T} \mathbf{x} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{align*}
\mathrm{Ax} & \stackrel{y}{>} \mathrm{b} \tag{2}\\
\mathrm{x} & \geq 0 \tag{3}
\end{align*}
$$

where,
(1) is the objective function,
(2) are the constraints and
(3) are the nonnegativity constraints.

The elements that appear in the model are:

- \mathbf{x} : is the vector of decision variables.
- \mathbf{c}^{T} : is the vector of cost coefficients.
- b: is the right-hand-side vector.
- A: is the constraint matrix.
\mathbf{c}^{T}, \mathbf{b} and \mathbf{A} are known parameters; \mathbf{x} contains the variables whose values have to be determined.

2. Notation

1.

$$
\text { opt } z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

subject to

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & \stackrel{>}{>} b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & \stackrel{>}{>} b_{2} \\
\vdots \quad \vdots & \ddots \\
\vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & \stackrel{>}{ } b_{m} \\
x_{1}, x_{2}, \ldots, x_{n} & \geq 0
\end{aligned}
$$

2.

$$
\text { opt } z=\left(c_{1}, \ldots, c_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)
$$

subject to

$$
\begin{gathered}
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\geq\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right) \\
\quad\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \geq(0,0, \cdots, 0)^{T}
\end{gathered}
$$

3.

$$
\text { opt } z=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

subject to

$$
\begin{array}{r}
\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}+\cdots+\mathbf{a}_{n} x_{n} \stackrel{\leq}{\mathbf{b}} \\
x_{j} \geq 0, j=1, \ldots, n
\end{array}
$$

3. Linear programming modeling

3.1 A transportation problem

A company produces bicycles at three plants in cities C_{1}, C_{2} and C_{3}. Their production capacity is 1000,2100 and 1500 bicycles per month, respectively. Four customers, A, B, C and D, from four different locations are demanding 800, 1100, 900 and 1300 bicycles, respectively, every month. The unit costs of transporting a bicycle from a given city to a given customer:

	A	B	C	D
C_{1}	10	8	10	13
C_{2}	19	6	15	16
C_{3}	14	8	9	6

The minimum-cost shipping must be found.

Decision variables.

$x_{i j}$: number of bicycles transported monthly from city C_{i} to customer $j, i=1,2,3, j=A, B, C, D$.

Linear model.

$$
\begin{array}{r}
\min z=10 x_{1 A}+8 x_{1 B}+10 x_{1 C}+13 x_{1 D}+19 x_{2 A}+6 x_{2 B}+ \\
15 x_{2 C}+16 x_{2 D}+14 x_{3 A}+8 x_{3 B}+9 x_{3 C}+6 x_{3 D}
\end{array}
$$ subject to

$$
\begin{array}{r}
x_{1 A}+x_{1 B}+x_{1 C}+x_{1 D} \leq 1000 \\
x_{2 A}+x_{2 B}+x_{2 C}+x_{2 D} \leq 2100 \\
x_{3 A}+x_{3 B}+x_{3 C}+x_{3 D} \leq 1500 \\
x_{1 A}+x_{2 A}+x_{3 A} \geq 800 \\
x_{1 B}+x_{2 B}+x_{3 B} \geq 1100 \\
x_{1 C}+x_{2 C}+x_{3 C} \geq 900 \\
x_{1 D}+x_{2 D}+x_{3 D} \geq 1300 \\
x_{i j} \geq 0, \quad i=1,2,3, \quad j=A, B, C, D
\end{array}
$$

3.2 A production problem

Pieces P_{1}, P_{2} and P_{3} are manufactured by using machines A, B and C. The number of hours each machine is available for manufacturing and the production cost:

Machine	Availability (hours/week)	Production cost (euro/hour)
A	1000	6
B	1000	4
C	1000	5

Each type of piece needs a different amount of processing time in each of the machines:

Machine	P_{1}	P_{2}	P_{3}
A	1	2	3
B	2	3	1
C	1	1	1

The availability of materials M_{1} and M_{2} used in the production process: 1000 kg and 1200 kg , respectively. The amount of material needed in the production of one piece of each type:

Piece	$M_{1}(\mathrm{~kg} /$ piece $)$	$M_{2}(\mathrm{~kg} /$ piece $)$
P_{1}	1	2
P_{2}	1	3
P_{3}	3	1

1 kg of material M_{1} costs 1.5 euros and 1 kg of material $M_{2} 3$ euros. Each piece is sold at the price of 50,56 and 70 euros, respectively.

The firm aims to find the maximum benefit production.

Decision variables.

x_{j} : number of pieces P_{j} that the firm will produce weekly, $j=1,2,3$.

Objective function. To maximize benefit.
Benefit $=$ Selling price - Materials cost - Production cost.

* Selling price $=50 x_{1}+56 x_{2}+70 x_{3}$
* Materials cost $=(1 \times 1.5+2 \times 3) x_{1}+$
$(1 \times 1.5+3 \times 3) x_{2}+(3 \times 1.5+1 \times 3) x_{3}$
* Production cost $=(1 \times 6+2 \times 4+1 \times 5) x_{1}+$
$(2 \times 6+3 \times 4+1 \times 5) x_{2}+(3 \times 6+1 \times 4+1 \times 5) x_{3}$

Linear model.

$$
\begin{aligned}
& \max z=23.5 x_{1}+16.5 x_{2}+35.5 x_{3} \\
& \text { subject to } \\
& x_{1}+2 x_{2}+3 x_{3} \leq 1000 \\
& 2 x_{1}+3 x_{2}+x_{3} \leq 1000 \\
& x_{1}+x_{2}+x_{3} \leq 1000 \\
& x_{1}+x_{2}+3 x_{3} \leq 1000 \\
& 2 x_{1}+3 x_{2}+x_{3} \leq 1200 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

3.3 A product-mix problem

A fuel company produces two types of fuel, A and B by mixing three types of crude oil.

The following table shows the number of crude oil barrels available and the cost of each barrel:

	Barrels available	Cost
Crude oil O_{1}	2000	10
Crude oil O_{2}	3000	8
Crude oil O_{3}	1000	12

The quality of fuels A and B is considered to be acceptable if:

- At least 30% of fuel A is crude oil O_{1}, at least 20% crude oil O_{2} and no more than 30% crude oil O_{3}.
- At least 25% of the composition of fuel B must be crude oil O_{1}, at least 25% crude oil O_{2}, and at least 25% crude oil O_{3}.

The selling prices of a barrel of fuel A and fuel B are 40 and 35 units, respectively.

The aim is to organize the fuel production in order to obtain the maximum benefit.

Decision variables.

$x_{i j}$: The amount of barrels of crude oil O_{i} in the composition of fuel $j, i=1,2,3, j=A, B$.

Objective function. To maximize benefit: "Selling price (SP)" - "Production cost (PC)".
$\mathrm{SP}=40\left(x_{1 A}+x_{2 A}+x_{3 A}\right)+35\left(x_{1 B}+x_{2 B}+x_{3 B}\right)$
$\mathrm{PC}=10\left(x_{1 A}+x_{1 B}\right)+8\left(x_{2 A}+x_{2 B}\right)+12\left(x_{3 A}+x_{3 B}\right)$

Linear model.

$\max z=30 x_{1 A}+32 x_{2 A}+28 x_{3 A}+25 x_{1 B}+27 x_{2 B}+23 x_{3 B}$ subject to

$$
\begin{gathered}
x_{1 A}+x_{1 B} \leq 2000 \\
x_{2 A}+x_{2 B} \leq 3000 \\
x_{3 A}+x_{3 B} \leq 1000 \\
x_{1 A} \geq \frac{30}{100}\left(x_{1 A}+x_{2 A}+x_{3 A}\right) \\
x_{2 A} \geq \frac{20}{100}\left(x_{1 A}+x_{2 A}+x_{3 A}\right) \\
x_{3 A} \leq \frac{30}{100}\left(x_{1 A}+x_{2 A}+x_{3 A}\right) \\
x_{1 B} \geq \frac{25}{100}\left(x_{1 B}+x_{2 B}+x_{3 B}\right) \\
x_{2 B} \geq \frac{25}{100}\left(x_{1 B}+x_{2 B}+x_{3 B}\right) \\
x_{3 B} \geq \frac{25}{100}\left(x_{1 B}+x_{2 B}+x_{3 B}\right) \\
x_{i j} \geq 0, \quad i=1,2,3, \quad j=A, B
\end{gathered}
$$

3.4 A diet problem

Diet: at least 25 milligrams of vitamin A, between 25 and 30 milligrams of vitamin B, at least 22 milligrams of vitamin C and no more than 17 milligrams of vitamin D.

	Citamins (mg/g)				Cost
Food	A	B	C	D	(euro/g)
F_{1}	2	1	0	1	0.014
F_{2}	1	2	1	2	0.009
F_{3}	1	0	2	0	0.013
F_{4}	1	2	1	1	0.016

The minimum cost diet which satisfies the nutritional requirements must be found.

Decision variables.

x_{j} : grams of each type of food F_{j} included in the diet, $j=1,2,3,4$.

Linear model.

$$
\min z=0.014 x_{1}+0.009 x_{2}+0.013 x_{3}+0.016 x_{4}
$$ subject to

$$
\begin{array}{r}
2 x_{1}+x_{2}+x_{3}+x_{4} \geq 25 \\
x_{1}+2 x_{2}+2 x_{4} \geq 25 \\
x_{1}+2 x_{2}+2 x_{4} \leq 30 \\
x_{2}+2 x_{3}+x_{4} \geq 22 \\
x_{1}+2 x_{2}+x_{4} \leq 17 \\
x_{j} \geq 0, \quad j=1,2,3,4
\end{array}
$$

3.5 A cutting problem

5 m long wooden sticks must be cut. Demands: 100 3 m long sticks, 1002 m long sticks, 3001.5 m long ones and 1501 m long sticks. The enterprise wants to minimize the waste incurred in meeting the customer demands.

7 different ways to cut the sticks:

Cutting option	3 m	2 m	1.5 m	1 m
1	1	1	0	0
2	1	0	0	2
3	0	2	0	1
4	0	1	2	0
5	0	1	0	3
6	0	0	2	2
7	0	0	0	5

Decision variables.

x_{j} : number of 5 m long sticks cut according to cutting option $j, j=1, \ldots, 7$.

Linear model.

$$
\min z=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7}
$$

subject to

$$
\begin{aligned}
& x_{1}+x_{2} \geq 100 \\
& x_{1}+2 x_{3}+x_{4}+x_{5} \geq 100 \\
& 2 x_{4}+2 x_{6} \geq 300 \\
& 2 x_{2}+x_{3}+3 x_{5}+2 x_{6}+5 x_{7} \geq 150 \\
& x_{j} \geq 0, j=1, \ldots, 7
\end{aligned}
$$

4. Graphical solution

4.1 A problem with a unique optimal solution

$$
\begin{aligned}
& \max z=6 x_{1}+3 x_{2} \\
& \text { subject to } \\
& 2 x_{1}+4 x_{2} \leq 8 \\
&-x_{1}+4 x_{2} \leq 4 \\
& x_{1}-x_{2} \leq 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

4.2 A problem with multiple optimal solutions

$$
\begin{aligned}
& \max z=x_{1}+x_{2} \\
& \text { subject to } \\
& x_{1}+x_{2} \leq 8 \\
&-4 x_{1}+4 x_{2} \leq 8 \\
& 2 x_{1}-x_{2} \leq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

4.3 An infeasible problem

$$
\begin{aligned}
& \max z=x_{1}+x_{2} \\
& \text { subject to } \\
& 2 x_{1}+x_{2} \leq 5 \\
& x_{1}-x_{2} \geq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

4.4 An unbounded feasible region. Unbounded solution

$$
\begin{aligned}
& \max z=x_{1}+2 x_{2} \\
& \text { subject to } \\
& x_{1}+2 x_{2} \geq 2 \\
&-2 x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

4.5 An unbounded region. A bounded solution

$$
\min z=x_{1}+2 x_{2}
$$

subject to

$$
\begin{aligned}
x_{1}+2 x_{2} & \geq 2 \\
-2 x_{1}+x_{2} & \leq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

