
Appendix A

Linear algebra and Convex sets

The simplex method described in Chapter 2 is a method of algebraic nature and
consists of solving systems of linear equations and determining the solution that
optimizes a previously determined objective function. In order to understand the
algebraic procedure, it is instructive to study its underlying geometry.

In this Appendix, we review some basic linear algebra and convexity results
needed throughout the preceding chapters.

A.1 Matrices and vectors

LetR be the field of real numbers. The elements ofR are called scalars. Amatrix
A is a rectangular array of scalars. If A ∈ R

m×n, the matrix has m rows and n
columns whose components are elements of R , and it is called an m × n matrix
(reads “m by n):

A =

















a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...

am1 am2 · · · amn

















,

where aij denotes the entry in row i and column j. The matrix can also be denoted
by A = (aij). If a matrix has just one column, that is, an m× 1 matrix, it is said
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234 Appendix A. Linear algebra and Convex sets

to be a column vector.

a =

















a11

a21
...

am1

















Therefore, aT will denote a row vector.

Examples.

1. The following array of scalars is a 3× 4 matrix:

A =











3 −2 2

5
1

0 7 2 1

2

1 0 1 1











2. The following array of scalars is a 3× 1 vector:

a =











3

0

1











�

A.1.1 Matrix operations
Addition of matrices

Given two m × n matrices, A = (aij) and B = (bij) ∈ R
m×n, the addition

of A and B, denoted by A + B, is the matrix C = (cij) ∈ R
m×n obtained by

performing the addition componentwise:

cij = aij + bij , i = 1, . . . ,m, j = 1, . . . , n.

Note that, the addition of two matrices is only possible if they are both of the same
size. The resulting matrix will also be of the same size.
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A.1. Matrices and vectors 235

The addition of vectors is a particular case of addition of matrices. Therefore,
it is defined in the same way. We only have to take into account that a vector is a
one-column matrix.

Examples.

1. Consider the vectors a =





1

3



 and b =





1

4



 ,

a+ b =





1

3



+





1

4



 =





2

7



 .

2. ConsiderA =











1 0 1 1

0 1 −1 0

2 0 1 −3











and B =











1 4 2 0

0 0 −1 0

1 1 2 −1











,

A+B =











1 0 1 1

0 1 −1 0

2 0 1 −3











+











1 4 2 0

0 0 −1 0

1 1 2 −1











=











2 4 3 1

0 1 −2 0

3 1 3 −4











.

�

Properties

1. The addition of matrices is an inner operation in Rm×n.

A,B ∈ R
m×n ⇒ A+B ∈ R

m×n.

2. The addition of matrices is commutative.

∀A,B ∈ R
m×n

A+B = B+A.

3. The addition of matrices is associative.

∀A,B,C ∈ R
m×n (A+B) +C = A+ (B+C).
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236 Appendix A. Linear algebra and Convex sets

4. There exists a neutral element for the addition. ∀A ∈ R
m×n there exists a

neutral element denoted by 0 ∈ R
m×n such that

A+ 0 = 0+A = A.

5. There exist opposite elements for the addition. ∀A ∈ R
m×n there exists an

element denoted by −A ∈ R
m×n such that

A+ (−A) = (−A) +A = 0.

The addition of vectors satisfies the same properties as the addition of matri-
ces.

Scalar multiplication

Let α ∈ R be a scalar and A = (aij) ∈ R
m×n be a matrix. The operation of

multiplyingA by α is represented by α ·A and is performed componentwise, that
is, multiplying every element of A by α. The result of this multiplication is a
matrix B = (bij) ∈ R

m×n of the same size asA, such that

bij = α · aij , i = 1, . . . ,m, j = 1, . . . , n.

Examples.

1. Let us considerA =











0 −2

1 2

1 1











and α = −2. In the scalar multiplication,

α ·A = −2 ·











0 −2

1 2

1 1











=











0 4

−2 −4

−2 −2











.

OpenCourseWare, UPV/EHU



A.1. Matrices and vectors 237

2. Let us consider a =











1

3

−5











and α = 1

2
. In the scalar multiplication,

α · a =
1

2
·











1

3

−5











=











1

2

3

2

−5

2











.

�

Inner product

Let aT = (a1 · · · an) ∈ R
1×n be a row vector and b =











b1
...

bn











∈ R
n a column

vector. The result of multiplying aT and b is called the inner product of the two
vectors, and is denoted by aT ·b. The result of this multiplication is a real number,
and is obtained multiplying componentwise the two vectors and adding the results
in the following way:

a
T · b = (a1 · · · an).











b1
...

bn











=
n

�

i=1

ai · bi.

The inner product of two vectors is only possible if both are of the same size.

a ∈ R
n, b ∈ R

n ⇒ a
T · b ∈ R .
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238 Appendix A. Linear algebra and Convex sets

Example. Let a =











4

2

7











and b =











−1

2

1











∈ R
3. The inner product:

a
T · b = (4 2 7) ·











−1

2

1











= 7 ∈ R .

�

Matrix multiplication

LetA ∈ R
m×n be anm× n matrix and B ∈ R

n×p an n× p matrix. The product
A ·B is defined as the m × p matrix C = A ·B ∈ R

m×p, where the entry (i, j)
in C is the inner product of the ith row ofA and the jth column of B.

Example. Consider matricesA =











4 −3

1 0

1 1











and B =





1 1 0 1

1 2 7 4



.

C = A ·B =











1 −2 −21 −8

1 1 0 1

2 3 7 5











.

�

Properties

1. The product of matrices is associative.

∀A ∈ R
m×n, ∀B ∈ R

n×p, ∀C ∈ R
p×q, (A ·B) ·C = A · (B ·C).

2. The product of matrices is distributive with respect to the sum.

∀A,B ∈ R
m×n, ∀C ∈ R

n×p, (A+B) ·C = A ·C+B ·C.

∀A ∈ R
m×n, ∀B,C ∈ R

n×p, A · (B+C) = A ·B+A ·C.
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A.1. Matrices and vectors 239

3. ∀A ∈ R
m×n, A · 0n×p = 0m×p, 0q×m ·A = 0q×n.

4. ∀A ∈ R
m×n, Im ·A = A · In = A.

5. ∀α ∈ R , ∀A ∈ R
m×n, ∀B ∈ R

n×p, α·(A·B) = (α·A)·B = A·(α·B).

A.1.2 The rank of a matrix

Given a matrix A ∈ R
m×n, it can be reduced to the form U by performing ele-

mentary row operations through the Gaussian elimination. The number of pivot
elements inU is the number of nonzero rows. Zero is never allowed as a pivot.

Example. Consider the following matrix:

A =

















1 2 3 −4 1

1 2 2 5 4

3 2 −5 2 4

2 0 −6 9 7

















.

Performing Gaussian elimination, we obtain the upper triangular matrixU.

A =

















1 2 3 −4 1

1 2 2 5 4

3 2 −5 2 4

2 0 −6 9 7

















→

















1 2 3 −4 1

0 0 −1 9 3

0 −4 −14 14 1

0 −4 −12 17 5

















→

















1 2 3 −4 1

0 −4 −14 14 1

0 0 −1 9 3

0 −4 −12 17 5

















→

















1 2 3 −4 1

0 −4 −14 14 1

0 0 −1 9 3

0 0 2 3 4
















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240 Appendix A. Linear algebra and Convex sets

→

















1 2 3 −4 1

0 −4 −14 14 1

0 0 −1 9 3

0 0 0 21 10

















= U.

�

Definition A.1.1 Let A ∈ R
m×n be a matrix, and let U be the resulting ma-

trix after performing Gaussian elimination. The rank of matrix A is denoted by
rankA and is equal to the number of pivot elements of matrixU.

The rank of the matrix in the preceding example is 4, the same as the number
of pivot elements. Notice that the rank coincides with the number of nonzero rows
inU.

A.2 Systems of linear equations

Let us consider a system withm linear equations of n variables

Ax = b,

where A ∈ R
m×n, rank A = r and b ∈ R

m. We shall solve the system by
performing Gaussian elimination. The following cases may arise:

• rank A �= rank (A b). Then, the system has no solution. It is said that the
system is inconsistent.

• rank A = rank (A b) = r. Then, there exists at least one solution to the
system. It is said that the system is consistent.

– r = number of variables. Then, there is one and only one solution. It
is said that the solution of the system is unique.

– r < number of variables. Then, there exists an infinite number of
solutions.
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A.2. Systems of linear equations 241

Example. Let us consider the following system of linear equations:

2x1 − x2 + 3x3 = 2

x1 + x2 − x3 = 4

3x1 + 2x3 = 5

In order to determine whether the system is consistent or inconsistent, we will
compute the rank of matricesA and (A b).

A =











2 −1 3

1 1 −1

3 0 2











, (A b) =











2 −1 3 2

1 1 −1 4

3 0 2 5











.

Performing the Gaussian elimination, it results:










2 −1 3 2

1 1 −1 4

3 0 2 5











→











2 −1 3 2

0 3

2
−5

2
3

0 3

2
−5

2
2











→











2 −1 3 2

0 3

2
−5

2
3

0 0 0 −1











.

We conclude that rank A = 2 < 3 = rank (A b). Thus, the system is
inconsistent.

�

Example. Let us consider the following system of linear equations:

2x1 + x2 = 3

x1 + x2 = 4

Performing the Gaussian elimination, we obtain:




2 1 3

1 1 4



 →





2 1 3

0 1

2

5

2



 ,

from where we conclude that rank A = rank (A b) = 2 = number of variables.
Thus, there exists a unique solution to the system: x1 = −1, x2 = 5. �
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Example. Let us consider the following system of linear equations:

2x1 − x2 + 3x3 = 2

x1 + x2 − x3 = 4

3x1 + 2x3 = 6

Performing the Gaussian elimination,










2 −1 3 2

1 1 −1 4

3 0 2 6











→











2 −1 3 2

0 3

2
−5

2
3

0 3

2
−5

2
3











→











2 −1 3 2

0 3

2
−5

2
3

0 0 0 0











.

We conclude that rank A = rank (A b) = 2 < number of variables. Thus,
there exists an infinite number of solutions to the system. Observe that the system
can be written in the following way:

2x1 − x2 = 2− 3x3

3

2
x2 = 3 +

5

2
x3

The variables x1 and x2 are called basic variables and x3 is a nonbasic variable.
The infinite solutions of the system can be described as:

x1 = 2−
2

3
x3, x2 = 2 +

5

3
x3, x3 ∈ R .

�

A.2.1 Basic solutions
LetAx = b be a system, whereA ∈ R

m×n,m < n, and rankA = rank (A b) =
m. Assume that the first m columns of A are linearly independent. Let B be the
m×m submatrix ofA formed by its firstm columns. LetN denote the last n−m

columns ofA. We can write the systemAx = b in the following way:

(B N)





xB

xN



 = b,
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A.2. Systems of linear equations 243

or
BxB +NxN = b.

The variables in xB are the basic variables, and the ones in xN are the nonbasic
variables. Then, we can solve xB in terms of xN ,

BxB = b−NxN .

We observe that there exists an infinite number of solutions to the system, which
can be computed assigning arbitrary values to the nonbasic vector xN . The unique
solution obtained setting the nonbasic variables equal to 0, that is setting xN = 0,
satisfies:

BxB = b,

and is called a basic solution of the system.

Example. Consider the following system of linear equations:

2x1 − x2 + 3x3 = 2

x1 + x2 − x3 = 4

3x1 + 2x3 = 6

By Gaussian elimination we obtain the equivalent system:

2x1 − x2 = 2− 3x3

3

2
x2 = 3 +

5

2
x3

There exists an infinite number of solutions to the system. We can solve x1 =
2 − 2

3
x3 and x2 = 2 + 5

3
x3, in terms of the nonbasic variable x3. If we assign

x3 = 0, we obtain the basic solution x1 = 2, x2 = 2.
There are different ways of extracting a submatrixB out ofA, and computing

the corresponding basic solution setting the nonbasic variables equal to 0. The
maximum number of basic solutions is bounded by the number of ways that m
columns can be extracted out of n to form the basis:





n

m



 =
n!

m! (n−m)!

In this example, the number of basic solutions is less than or equal to:




3

2



 =
3!

2! (3− 2)!
= 3.

�
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A.3 Vector spaces
Let us consider the vector space Rm.

Definition A.3.1 (Linear combination) A linear combination of vectors v1, v2,
. . . , vn of Rm is:

α1v1 + α2v2 + · · ·+ αnvn,

where α1, . . . , αn ∈ R are real numbers.

Example. Let v1 and v2 be the vectors:

v1 =





1

0



 , v2 =





1

−1



 .

• The following is a linear combination of v1 and v2:

2





1

0



+ 5





1

−1



 .

• The next expression represents all possible linear combinations of the vec-
tors v1 and v2:

α1





1

0



+ α2





1

−1



 ,

for every α1, α2 ∈ R .

�

A.3.1 Linear dependence and independence
Definition A.3.2 The vectors v1, . . . ,vn ∈ R

m are said to be linearly indepen-
dent if for every linear combination such that

α1v1 + · · ·+ αnvn = 0

it implies that
α1 = · · · = αn = 0.
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Definition A.3.3 The vectors v1, . . . ,vn ∈ R
m are said to be linearly dependent

if there exist α1, · · · , αn ∈ R not all of them zero, such that

α1v1 + · · ·+ αnvn = 0.

Obviously, they are not linearly independent.

Example.

1. Let us consider the vectors





1

−1



 ,





4

−4



 .

As,

4





1

−1



+ (−1)





4

−4



 =





0

0





we conclude that the two vectors are linearly dependent.

2. Let us consider the vectors











1

−1

2











,











3

0

−1











,











9

−3

5











,

and the following linear combination:

α1











1

−1

2











+ α2











3

0

−1











+ α3











9

−3

5











=











0

0

0











.

By Gaussian elimination we obtain:










1 3 9

−1 0 −3

2 −1 5











→











1 3 9

0 3 6

0 −7 −13











→











1 3 9

0 3 6

0 0 1











.

As there are three pivot elements in the reduced matrix, the unique solution
of the system is: α1 = α2 = α3 = 0. This implies that the three vectors
given are linearly independent. �
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A.3.2 Basis and dimension
Definition A.3.4 A set of vectors S = {v1, . . . ,vp} ⊆ R

m is said to be a span-
ning set for Rm if every vector v ∈ R

m can be represented as a linear combina-
tion of the vectors of S, that is, if there exist α1, . . . , αp ∈ R such that

v = α1v1 + · · ·+ αpvp.

Example. Let S be the following set of vectors, and v be a vector of R 3:

S =





























1

−1

1











,











3

1

0











,











2

1

1











,











2

−2

2





























, v =











v1

v2

v3











.

We will see that there exist α1, α2, α3, α4 ∈ R such that the following system is
consistent:

α1











1

−1

1











+ α2











3

1

0











+ α3











2

1

1











+ α4











2

−2

2











=











v1

v2

v3











By Gaussian elimination we obtain:










1 3 2 2 v1

−1 1 1 −2 v2

1 0 1 2 v3











→











1 3 2 2 v1

0 4 3 0 v2 + v1

0 −3 −1 0 v3 − v1











→

→











1 3 2 2 v1

0 4 3 0 v2 + v1

0 0 5

4
0 v3 −

1

4
v1 +

3

4
v2











.

As rankA = rank (Ab) = 3, the system is consistent. Therefore, S is a spanning
set for R 3. �

Definition A.3.5 A collection of vectors B = {v1, . . . ,vm} ⊆ R
m forms a basis

of Rm if the following conditions hold:
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• The vectors of B are linearly independent.

• B is a spanning set for Rm.

There are infinite bases in a vector space. However, all of them contain the
same number of vectors. This number is the dimension of the vector space.

Example. Prove that the following set of vectors B forms a basis for R 3.

B =





























1

2

0











,











0

1

0











,











1

1

2





























.

In order to prove that the three vectors are linearly independent, we solve the
system:

α1











1

2

0











+ α2











0

1

0











+ α3











1

1

2











=











0

0

0











By Gaussian elimination,










1 0 1

2 1 1

0 0 2











→











1 0 1

0 1 −1

0 0 2











.

The system has a unique solution: α1 = α2 = α3 = 0. Therefore, the vectors
of B are linearly independent.

In order to prove that B is a spanning set for R 3, we solve the system:

α1











1

2

0











+ α2











0

1

0











+ α3











1

1

2











=











v1

v2

v3











.

It is easy to see that the system is consistent. Thus, B is a spanning set for R 3.

Therefore, B forms a basis in R 3. �
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Theorem A.3.1 LetB = {v1, . . . ,vm} be a basis in Rm. Then, every vector v ∈
R

m can be expressed as a linear combination of v1, . . . ,vm, and the coefficients
of that linear combination are unique.

The unique coefficients of the linear combination of Theorem A.3.1 are the
coordinates of the vector v.

Theorem A.3.2 Given a basis B for R
m and a vector v ∈ R

m, v �∈ B and
v �= 0, it is always possible to form another basis, by replacing a vector in B by
the vector v.

This result is crucial in the development of the linear programming. In fact,
the simplex algorithm starts with a basic feasible solution and moves to a better
one, by replacing a vector in the basis, as described in the previous theorem. A
condition must be satisfied in order to guarantee that, once a vector in the basis is
replaced by another vector, the new set of vectors will still form a basis. We will
illustrate the condition with an example.

Example. Consider a basis B and a vector v in R 3.

B = {v1,v2,v3} =





























1

2

0











,











0

1

0











,











1

1

2





























, v =











3

1

0











.

We represent v as a linear combination of the vectors of B:










3

1

0











= α1











1

2

0











+ α2











0

1

0











+ α3











1

1

2











,

solve the system and obtain the coordinates: α1 = 3 , α2 = −5 , α3 = 0. Since
α1 �= 0 and α2 �= 0, vectors v1 and v2 can be substituted by v to obtain the
following bases:

B� = {v,v2,v3} , B�� = {v1,v,v3}.

However, the set of vectors generated by substituting v3 by v does not form a
basis, because {v1,v2,v} are linearly dependent. This happens because α3 = 0.
Therefore, the vector v3 cannot be substituted by v.

�
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A.4 Convex sets
The Euclidean plane is the set of all ordered pairs of real numbers

R
2 =











x1

x2



 , where x1 and x2 are real numbers







.

Geometrically, R 2 can be represented as in Figure A.1:

x1

x2

(3,−2)

Figure A.1: Euclidean plane

InR 2 an equation of the form a1x1+a2x2 = c, where a1, a2 and c are constants
in R , represents a straight line. For example, the equation 2x1 + 3x2 = 6 is the
line drawn in Figure A.2.

An inequality of the form a1x1 + a2x2 ≤ c is the set of all of the points lying
on the line a1x1 + a2x2 = c, together with all those points lying to one side of the
line. For example, 2x1 + 3x2 ≤ 6 is the set of all points in the shaded region in
Figure A.3.

A half-space of R 2 is the set of all points of R 2 which satisfies an inequality
of the form a1x1 + a2x2 ≤ c or a1x1 + a2x2 ≥ c, where at least one of the
constants a1 or a2 is nonzero.

The 3-dimensional Euclidean space is the set of all ordered triplets,

R
3 =





























x1

x2

x3











, where x1, x2 and x3 are real numbers



















.
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x1

x2

2x1 + 3x2 = 62

3

Figure A.2: A straight line in the plane

x1

x2

2x1 + 3x2 ≤ 6

Figure A.3: An inequality in the plane

In R 3 the equation of the form a1x1 + a2x2 + a3x3 = c where a1, a2, a3 and
c are constants in R , represents a plane. For instance, 3x1 − x2 + 4x3 = 6 is a
plane.

A half-space of R 3 is the set of all points of R 3 which satisfies an inequality
of the form a1x1 + a2x2 + a3x3 ≤ c or a1x1 + a2x2 + a3x3 ≥ c.
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We can generalize these definitions to an n-dimensional Euclidean space

R
n =















































x1

x2

...

xn

















, where x1, x2, . . . xn are real numbers































In R n the equation a1x1 + a2x2 + · · · + anxn = c where a1, . . . , an, c ∈ R are
constants, represents a hyperplane.

A half-space of R n is the set of the points of R n which satisfies an inequality
of the form a1x1 + a2x2 + · · ·+ anxn ≤ c or a1x1 + a2x2 + · · ·+ anxn ≥ c.

Definition A.4.1 A subset C of R n is a convex set if C is empty, if C contains a
single point, or if for every two distinct points in C, the line segment connecting
them lies entirely in C.

The sets (a), (b) and (c) in Figure A.4 are convex. The set (d) is not convex.

(a) (b)

(c) (d)

Figure A.4: Convex sets: (a), (b), (c). The set (d) is not convex.

The following results can be proved:

• A hyperplane is a convex set.
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• A half-space is a convex set.

• The intersection of a finite number of convex sets is a convex set.

In linear programming, convex sets such as hyperplanes, half-spaces and the
intersection of a finite number of convex sets are of special significance, because
they appear in the study of linear models. The intersection of a finite number of
half-spaces is a convex set of the form (a), where the vertices of the set are called
extreme points.

A.5 Extreme points and basic feasible solutions

A set of linear inequations can be converted into a set of linear equations by adding
variables. We shall now show that if the variables are restricted to take on values
greater than or equal to zero, then by converting a set of linear inequations into
a set of linear equations, we can find a correspondence between basic feasible
solutions of linear equations and the extreme points of the set of inequations.

Consider the following set of inequations:

−x1 + 4x2 ≤ 4

x1 − x2 ≤ 3

Figure A.5 represents the points which satisfy the two inequalities and the
nonnegativity constraints x1 ≥ 0 and x2 ≥ 0. We can see that the intersection of
the two half-spaces, together with x1 ≥ 0 and x2 ≥ 0, is a convex set; a polygon
in this case. The polygon has a finite number of vertices, which are the extreme
points of the set.

The point O is the origin of the coordinate system. The point A is the inter-
section of −x1 + 4x2 = 4 and the x2 axis. The point B is the intersection of
−x1 + 4x2 = 4 and x1 − x2 = 3. The point C is the intersection of x1 − x2 = 3
and the x1 axis.

O =





0

0



 , A =





0

1



 , B =





16

3

7

3



 , C =





3

0




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O

A

B

C x1

x2

−x1 + 4x2 = 4

x1 − x2 = 3

Figure A.5: A convex set and the extreme points

In general, as the example shows, in the Euclidean plane, the intersection of a
finite number of half-spaces is a convex set, that is, either it is the empty set, or a
set with a unique point, or a polygon with a finite number of extreme points. In the
3-dimensional Euclidean space, the intersection of a finite number of half-spaces
is also a convex set, that is, either it is the empty set, it is a set with a unique point,
or it is a polyhedron with a finite number of extreme points. In the n-dimensional
Euclidean space, the intersection of a finite number of half-spaces is a convex set
called polytope.

We can convert inequations into equations by adding nonnegative variables x3

and x4. We get the following system of linear equations:

−x1 + 4x2 + x3 = 4

x1 − x2 + x4 = 3

There exists an infinite number of solutions to the system, specifically, the set of
all points in the shaded region of Figure A.5. We can compute the basic solutions
and choose the ones with all the variables greater than or equal to zero, so that we
can confirm that they correspond to the extreme points of the polygon in Figure
A.5.
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1. Choosing the first and second columns in the system of equations, which
are linearly independent, and setting x3 = x4 = 0, we obtain the following
system:

−x1 + 4x2 = 4

x1 − x2 = 3

The solution of the system is x1 = 16

3
, x2 = 7

3
, which corresponds to the

extreme point B (see Figure A.5).

2. Choosing the first and third columns in the system of equations, which are
linearly independent, and setting x2 = x4 = 0, we obtain the following
system:

−x1 + x3 = 4

x1 = 3

The solution of the system is x1 = 3, x3 = 7, which corresponds to the
extreme point C (see Figure A.5).

3. Choosing the first and fourth columns in the system of equations, which are
linearly independent, and setting x2 = x3 = 0, we obtain the following
system:

−x1 = 4

x1 + x4 = 3

The solution of the system is x1 = −4, x4 = 7 which does not correspond
to any extreme point, because it has a negative component; it violates the
nonnegativity constraint.

4. Choosing the second and third columns in the system of equations, which
are linearly independent, and setting x1 = x4 = 0, we obtain the following
system:

4x2 + x3 = 4

−x2 = 3
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The solution of the system is x2 = −3, x3 = 16 which does not correspond
to any extreme point, because it has a negative component; it violates the
nonnegativity constraint.

5. Choosing the second and fourth columns in the system of equations, which
are linearly independent, and setting x1 = x3 = 0, we obtain the following
system:

4x2 = 4

−x2 + x4 = 3

The solution of the system is x2 = 1, x4 = 4, which corresponds to the
extreme point A (see Figure A.5).

6. Choosing the third and fourth columns in the system of equations, which
are linearly independent, and setting x1 = x2 = 0, we obtain the following
system:

x3 = 4

x4 = 3

The solution of the system is x3 = 4, x4 = 3, which corresponds to the
extreme point O (see Figure A.5). �

The procedure used in the preceding example leads to the computation of the
extreme points of the convex set in Figure A.5; the intersection of a finite number
of half-spaces where all variables are restricted to take on values greater than or
equal to zero. The procedure can be generalized to n-dimensional vector spaces,
n > 2. Observe that the extreme points can be computed without representing
geometrically the convex set.
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