
Chapter 6

Integer Programming

Integer programming (IP) deals with solving linear models in which some or all
the variables are restricted to be integer. There are algorithms especially designed
for IP problems which basically find the optimal solution by solving a sequence
of linear programming (LP) problems.

The simplex algorithm studied in Chapter 2 is based on the fact that the feasi-
ble region (the set of feasible solutions) of an LP problem is convex. This property
plays a key role in the solution of linear models. In fact, the number of extreme
points of a convex set of solutions is finite, and we have shown that the optimal
solution is obtained in an extreme point. Therefore, even though the number of
solutions is reduced when variables are restricted to be integer, IP problems are
usually much more difficult to solve than LP problems because the set of feasible
solutions is no longer convex.

According to the nature of the variables, we can distinguish three types of IP
models.

• In mixed integer programming, only some of the variables are restricted to
integer values.

• In pure integer programming, all the variables are integers.

• In binary integer programming or 0-1 integer programming, all the variables
are binary (restricted to the values 0 or 1).

205

206 Chapter 6. Integer Programming

6.1 Some applications of integer programming

This section presents some illustrative examples of typical integer programming
problems (IP problems) and binary programming problems (0-1 IP problems).

Example 1. The number of employees needed in a post office varies depend-
ing on the day of the week, as shown in the table:

Day Employees

1. Monday 15

2. Tuesday 13

3. Wednesday 15

4. Thursday 18

5. Friday 14

6. Saturday 16

7. Sunday 10

Employees work five consecutive days and have the next two days off. It
becomes necessary to organize groups of employees to work in different shifts,
so that the number of employees required is satisfied every day of the week. The
objective is to employ the minimum number of workers. We define the following
decision variables:

xj : number of employees whose working shift starts on dayj, j = 1, . . . , 7.

We can make sure that the number of employees required every day of the
week is satisfied by introducing a constraint in the model. Each of the constraints
requires to have the necessary number of employees each day. We obtain the

OpenCourseWare, UPV/EHU

6.1. Some applications of integer programming 207

following IP model:

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7

subject to
x1 + x4 + x5 + x6 + x7 ≥ 15

x1 + x2 + x5 + x6 + x7 ≥ 13

x1 + x2 + x3 + x6 + x7 ≥ 15

x1 + x2 + x3 + x4 + x7 ≥ 18

x1 + x2 + x3 + x4 + x5 ≥ 14

x2 + x3 + x4 + x5 + x6 ≥ 16

x3 + x4 + x5 + x6 + x7 ≥ 10

x1, x2, x3, x4, x5, x6, x7 ≥ 0 and integer

Example 2. A knapsack problem. Let us suppose that we want to put four
items in a knapsack that can hold up to 12 kg. The weight and the value associated
with each of the items are listed below:

1 2 3 4

Weight (kg) 3 6 5 5

Value (euro) 15 25 12 10

We need to decide which items to put in so as to maximize the total value of
the knapsack. We define four binary variables, one for each item j, j = 1, 2, 3, 4,
as follows:

xj =

1 if item j is introduced in the knapsack

0 otherwise

The 0-1 IP model that represents the problem is:

max z = 15x1 + 25x2 + 12x3 + 10x4

subject to
3x1 + 6x2 + 5x3 + 5x4 ≤ 12

x1, x2, x3, x4 = 0 or 1

Operations Research. Linear Programming

208 Chapter 6. Integer Programming

We may also want to take into account other constraints in the problem, such as
the volume of the items.

Example 3. There are 6 cities in a district, and there is a project to commu-
nicate them by the construction of train stations in some of the cities. A decision
has to be made about where to build the train stations. The final solution has to
ensure that citizens of all cities can reach a train station in 30 minutes at most.
The objective is to build the minimum number of train stations. The table below
shows how long it takes to go from one city to another:

1 2 3 4 5 6

1 0 35 20 40 30 60

2 35 0 45 35 20 70

3 20 45 0 15 55 20

4 40 35 15 0 65 35

5 30 20 55 65 0 40

6 60 70 20 35 40 0

We define a binary variable for each city j, j = 1, . . . , 6:

xj =

1 if a train station is built in city j

0 otherwise

The 0-1 IP model is:

min z = x1 + x2 + x3 + x4 + x5 + x6

subject to
x1 + x3 + x5 ≥ 1

x2 + x5 ≥ 1

x1 + x3 + x4 + x6 ≥ 1

x3 + x4 ≥ 1

x1 + x2 + x5 ≥ 1

x3 + x6 ≥ 1

x1, x2, x3, x4, x5, x6 = 0 or 1

OpenCourseWare, UPV/EHU

6.2. Solving integer programming problems 209

Each constraint refers to a city, and ensures that at least one train station will
be located no further than a 30 minute drive from each city.

6.2 Solving integer programming problems
In this section we illustrate by means of an example the difficulties found while
solving an IP problem.

Consider the following IP problem:

max z = 80x1 + 45x2

subject to
x1 + x2 ≤ 7

12x1 + 5x2 ≤ 60

x1, x2 ≥ 0 and integer

The graphical representation of the problem shows the set of solutions:

x1 + x2 = 7

12x1 + 5x2 = 60

x1

x2

max

We can see that the feasible region of the IP problem is not a convex set. Note
that there is a finite number of points in the feasible region, and hence, it is possible

Operations Research. Linear Programming

210 Chapter 6. Integer Programming

to find the optimal solution by computing the objective value z for each of the
solutions in the feasible region, and comparing them among each other. However,
this method is not efficient for problems with a large number of variables, since
the number of feasible points becomes extremely large.

In fact, a higher computational effort is required to solve an IP problem than
to solve the LP problem obtained by ignoring all integer constraints on variables,
even though the number of feasible solutions to the IP problem is smaller. This
is the case because contrary to LP problems, which have a convex set of feasible
solutions, the feasible region of IP problems is not convex. Remind that the theory
developed in Chapter 2 is applicable whenever the set of solutions is convex.

Another approach to solve an IP problem suggests to ignore the integer con-
straints, solve the resulting LP problem by applying the simplex algorithm and
finally round off the noninteger values to integers. The LP problem obtained by
ignoring the integer constraints is usually called its LP relaxation, denoted by
LPR from now on. The following is the graphical solution of the given IP prob-
lem’s LP relaxation.

x1 + x2 = 7

12x1 + 5x2 = 60

x1

x2

xLPR = (
25

7
,
24

7
)max

The optimal solution to the LP relaxation is xLPR = (25
7
, 24

7
) = (3.571, 3.428),

and the optimal objective value is zLPR = 440. However, it is not an optimal

OpenCourseWare, UPV/EHU

6.3. The graphical solution of integer programming problems 211

solution to the IP problem, because it is not feasible; it does not satisfy the integer
constraints. Rounding off each integer variable to the nearest integer value, we
obtain the following four nearest points: (3, 3), (3, 4), (4, 3), (4, 4). By computing
the objective value z for each of them, we conclude that point (4, 4) gives the
maximum value to z. Unfortunately, it is not feasible because it is not contained
in the set of solutions of the IP problem.

x1 + x2 = 7

12x1 + 5x2 = 60

x1

x2

max

This method is not appropriate to solve IP problems, because there is no guar-
antee that the rounded solution will be optimal, or even feasible, for the IP prob-
lem. Moreover, for IP problems with a large number of integer variables the
difficulties increase.

Because of these difficulties, better approaches to deal with IP problems have
been devised. Next, we present a very popular technique called the branch and
bound method.

6.3 The graphical solution of integer programming
problems

The basic idea of the branch and bound algorithm is the following. First, the LP
relaxation of the IP problem is solved. If its optimal solution does not satisfy

Operations Research. Linear Programming

212 Chapter 6. Integer Programming

the integer requirements, two additional LP problems are created by subdividing
the set of solutions of the LP relaxation. This partitioning is made in such a
way that a subset of noninteger solutions that contains the optimal solution to the
LP relaxation is excluded from the set of solutions, and gives rise to the concept
of branching in the branch and bound algorithm. Afterwards, the two new LP
problems are solved.

In this section, we illustrate the branch and bound algorithm by applying it to
the IP problem shown on page 209. A sequence of LP relaxation problems are
used to solve the IP problem, and their graphical solution represents the sets of
solutions very appropriately. Let us consider the IP problem and its LP relaxation.

IP problem LP relaxation: LPR

max z = 80x1 + 45x2 max z = 80x1 + 45x2

subject to subject to

x1 + x2 ≤ 7 x1 + x2 ≤ 7

12x1 + 5x2 ≤ 60 12x1 + 5x2 ≤ 60

x1, x2 ≥ 0 and integer x1, x2 ≥ 0

From the graphical solution on page 210, we know that the optimal solution
to the LP relaxation is xLPR = (3.571, 3.428), with the optimal objective value
zLPR = 440. This solution does not give integer values to the variables. We will
now see that the optimal solution to the IP problem may be found throught the
solution of a sequence of LP relaxation problems. To do so, we start the branching
process dividing the set of solutions of the LP relaxation into two, and excluding
a subset of noninteger solutions that contains xLPR.

The way to proceed is as follows: we select an integer defined variable that
takes on a fractional value in the optimal solution to the LP relaxation. In this
example, both x1 and x2 may be selected. Selecting x1 arbitrarily, with an optimal
value of 3.571, we may exclude the region 3 < x1 < 4 from the feasible region
of the LP relaxation, because it contains no integer values for x1. Note that every
point in the feasible region of the IP problem must have either x1 ≤ 3 or x1 ≥ 4.
Therefore, we partition the feasible region of the LP relaxation by branching on
x1, and create the following two additional LP problems:

OpenCourseWare, UPV/EHU

6.3. The graphical solution of integer programming problems 213

Problem LP2 Problem LP3

max z = 80x1 + 45x2 max z = 80x1 + 45x2

subject to subject to

x1 + x2 ≤ 7 x1 + x2 ≤ 7

12x1 + 5x2 ≤ 60 12x1 + 5x2 ≤ 60

x1 ≤ 3 x1 ≥ 4

x1, x2 ≥ 0 x1, x2 ≥ 0

The graphical solution of the two LP problems just created, LP2 and LP3, can
be seen on page 214. The two shaded areas correspond to the feasible regions of
problems LP2 and LP3. Note that the region 3 < x1 < 4 of the LP relaxation
feasible region has been excluded. The optimal solutions are:

• Problem LP2: Optimal solution xLP2 = (3, 4) with zLP2 = 420.

• Problem LP3: Optimal solution xLP3 = (4, 12
5
) with zLP3 = 428.

The optimal solution to problem LP2 satisfies the integer requirements for x1

and x2. Thus, LP2 is said to be fathomed or pruned, which means that no further
branching is required for LP2. The optimal solution to LP2, xLP2 = (3, 4), is
called a candidate solution, which means that it will be an optimal solution for the
IP problem, if a better feasible solution is not found. The optimal objective value
zLP2 = 420 for the candidate solution is a lower bound on the optimal objective
value of the IP problem: zLB = 420.

Operations Research. Linear Programming

214 Chapter 6. Integer Programming

x1 + x2 = 7

12x1 + 5x2 = 60 x1 = 3 x1 = 4

x1

x2

(3, 4)

(4, 12
5
)

max

Problem LP2
Problem LP3

We now examine problem LP3. The optimal solution to problem LP3 is not
feasible for the IP problem, because variable x2 = 12

5
= 2.4 takes on a fractional

value. Since zLP3 = 428 > zLB , problem LP3 is examined further because
branching on LP3 may yield a better feasible integer solution than the candidate
solution; a solution with z > 420.

The fractional value of x2 leads to the two branches x2 ≤ 2 and x2 ≥ 3.
Branching on LP3, the two additional problems LP4 and LP5 are generated. The
integer-free region 2 < x2 < 3 is excluded from the feasible region of problem
LP3.

Problem LP4 Problem LP5

max z = 80x1 + 45x2 max z = 80x1 + 45x2

subject to subject to

x1 + x2 ≤ 7 x1 + x2 ≤ 7

12x1 + 5x2 ≤ 60 12x1 + 5x2 ≤ 60

x1 ≥ 4, x2 ≤ 2 x1 ≥ 4, x2 ≥ 3

x1, x2 ≥ 0 x1, x2 ≥ 0

OpenCourseWare, UPV/EHU

6.3. The graphical solution of integer programming problems 215

From the graphical solution of the two newly created problems, we see that
problem LP5 is infeasible. It cannot yield the optimal solution to the IP problem,
and thus, problem LP5 is pruned; no further branching is required.

x1 + x2 = 7

12x1 + 5x2 = 60 x1 = 4

x2 = 3

x2 = 2

x1

x2

(4.16, 2)

max

Problem LP4
Problem LP5

The optimal solution to problem LP4 is xLP4 = (25
6
, 2) = (4.166, 2), which is

not feasible for the IP problem, because x1 = 4.166 is noninteger. Since zLP4 =
1270

3
= 423.33 and compared with the lower bound zLP4 > zLB = 420 holds,

problem LP4 is examined further, because branching on LP4 may yield a better
feasible integer solution than the candidate solution. The noninteger value of
x1 leads to the two branches x1 ≤ 4 and x1 ≥ 5. Branching on LP4, the two
additional problems LP6 and LP7 are generated.

Operations Research. Linear Programming

216 Chapter 6. Integer Programming

Problem LP6 Problem LP7

max z = 80x1 + 45x2 max z = 80x1 + 45x2

subject to subject to

x1 + x2 ≤ 7 x1 + x2 ≤ 7

12x1 + 5x2 ≤ 60 12x1 + 5x2 ≤ 60

x1 ≥ 4, x2 ≤ 2, x1 ≤ 4 x1 ≥ 4, x2 ≤ 2, x1 ≥ 5

x1, x2 ≥ 0 x1, x2 ≥ 0

x1 + x2 = 7

12x1 + 5x2 = 60 x1 = 4

x2 = 2

x1 = 5

x1

x2

(4, 2)

(5, 0)

max

Problem LP6

Problem LP7

The feasible region of problem LP6 is a line segment, and its optimal solution
is xLP6 = (4, 2) with zLP6 = 410. Since zLP6 < zLB = 420, the problem is
pruned.

The feasible region of problem LP7 contains just one point, which conse-
quently is its optimal solution: xLP7 = (5, 0). The optimal objective value is
zLP7 = 400, which is lower than the lower bound, zLP7 < zLB = 420. Hence, the
problem is pruned.

At this point, no further branching is required. Since there are no remaining
unsolved problems, the optimal solution to the IP problem is the candidate solu-

OpenCourseWare, UPV/EHU

6.4. The branch and bound method 217

tion obtained from problem LP2, that is, the one associated with the lower bound:

x∗

IP = xLP2 = (x∗

1, x
∗

2) = (3, 4) and z∗IP = zLB = 420.

The entire solution sequence is summarized in a diagram (see Figure 6.1).
Note that we completed the procedure by solving a total of seven LP problems.
Also note that the optimal objective value computed for each LP problem is an
upper bound on the optimal objective value of the IP problem on that branch.

Problem LPR

Problem LP2 Problem LP3

Problem LP4 Problem LP5

Problem LP6 Problem LP7

xLPR = (3.571, 3.428)

xLP2 = (3, 4) xLP3 = (4, 2.4)

xLP4 = (4.166, 2)
Infeasible

xLP6 = (4, 2) xLP7 = (5, 0)

zLPR = 440

zLP2 = 420 zLP3 = 428

zLP4 = 423.33

zLP6 = 410 zLP7 = 400

zLB = 420

x1 ≤ 3 x1 ≥ 4

x2 ≤ 2 x2 ≥ 3

x1 ≤ 4 x1 ≥ 5

Candidate solution

Pruned

PrunedPruned

Pruned

Figure 6.1: Diagram of the entire solution sequence of the example.

6.4 The branch and bound method
In the previous section, we used the branch and bound algorithm and solved graph-
ically a sequence of LP problems to find the optimal solution to an IP problem.
Throughout the solution process, we used the following concepts: the LP relax-
ation of an IP problem, a candidate solution and a fathomed or pruned LP prob-
lem.

Operations Research. Linear Programming

218 Chapter 6. Integer Programming

Definition 6.4.1 (LP relaxation) Given an IP problem, the LP problem obtained
by ignoring all integer constraints on variables is said to be its LP relaxation.

IP problem LP relaxation: LPR

max z = cTx max z = cTx

subject to subject to

Ax ≤ b Ax ≤ b

x ≥ 0 and integer x ≥ 0

The LP relaxation has less constraints than the IP problem, because all integer
constraints on variables are ignored. Therefore, the set of all feasible solutions
to the LP relaxation includes all the feasible solutions to the IP problem. Conse-
quently, the following holds:

z∗LPR ≥ z∗IP .

Definition 6.4.2 (Candidate solution) Given an IP problem, an integer solution
found throughout the solution process is said to be a candidate solution if it is the
best integer solution found so far.

A candidate solution will become an optimal solution to the IP problem, if at
the end of the branch and bound algorithm a better integer solution is not found.
The optimal objective value zLB for the candidate solution is a lower bound on
the optimal objective value of the IP problem. In fact, it is the largest objective
value computed for a solution which meets all the integer constraints. Throughout
the solution process of the IP problem, if the optimal objective value of an LP
problem is smaller than or equal to zLB , then the LP problem is pruned and it will
not be examined further, because branching on it will not yield a better solution to
the IP problem.

Definition 6.4.3 (A pruned problem) Throughout the solution process of an IP
problem, the following three cases indicate that an LP problem can be pruned: (1)
the LP problem is infeasible, (2) the optimal objective value of the LP problem is
smaller than or equal to zLB , (3) the LP problem has an integer optimal solution.

OpenCourseWare, UPV/EHU

6.4. The branch and bound method 219

For instance, problems LP2, LP5, LP6 and LP7 are pruned problems (see
Figure 6.1).

As it was previously said, the optimal objective value of an LP problem is an
upper bound on the optimal objective value of the IP problem on that branch. We
use the notation zUB to denote the upper bound that the optimal objective value of
each LP problem establishes throughout the solution process of an IP problem.

6.4.1 The branch and bound algorithm
Let us assume we have a maximization IP problem. The branch and bound algo-
rithm can be summarized in the following steps:

* Step 1. Initialization
Solve the LP relaxation associated with the IP problem to be solved.

– If the optimal solution to the LP relaxation satisfies the integer con-
straints, then it is an optimal solution to the IP problem. Stop.

– Otherwise, set zLB = −∞ to initialize the lower bound on the optimal
objective value of the IP problem.

* Step 2. Branching
Select an LP problem among the LP problems that can be branched out.
Choose a variable xj which is integer-restricted in the IP problem but has a
noninteger value in the optimal solution of the selected LP problem. Create
two new LP problems adding the constraints1 xj ≤ [xj] and xj ≥ [xj] + 1
to the LP problem.

* Step 3. Bounding
Solve2 the two LP problems created in Step 2, and compute the objective
value zUB for each of them.

* Step 4. Pruning
An LP problem may be pruned and therefore eliminated from further con-
sideration, in the following cases:

(1) Pruned by infeasibility. The problem is infeasible.
1[xj] represents the greatest integer less than or equal to xj
2Sensitivity analysis is commonly used and the dual simplex algorithm applied.

Operations Research. Linear Programming

220 Chapter 6. Integer Programming

(2) Pruned by bound. zUB ≤ zLB , that is, the optimal objective value of
the LP problem is smaller than or equal to the lower bound.

(3) Pruned by optimality. The optimal solution is integer and zUB > zLB .
Change the lower bound to the new value, zLB =zUB; the solution
associated with the new lower bound is the new candidate solution.

If there are LP problems that can be branched out, then go to Step 2, and
perform another iteration. Otherwise, the candidate solution is the optimal
solution to the IP problem. If no candidate solution has been found, the IP
problem is infeasible.

Even though a high computational effort is required to find the optimal solu-
tion to an IP problem by applying the branch and bound algorithm, it is the most
popular algorithm used to solve both mixed and pure IP problems.

Note that Step 2 is quite flexible, because it does not specify neither how to
select an LP problem to be branched out nor how to choose a branching variable
xj , if there are several choices. Several rules have been designed to avoid arbi-
trary choices and guide the search of an optimal solution to the IP problem. In
fact, experience has shown that the way such decisions are made has an important
effect on the computational efficiency of the branch and bound algorithm. A com-
monly used rule to select an LP problem to be branched out is the best bound rule,
which suggests that the LP problem with the largest upper bound zUB should be
selected. Some rules have also been designed to choose a branching variable, but
unfortunately, they are quite complex. In the following example, we choose the
branching variable arbitrarily.

Example. We apply the branch and bound algorithm to find the optimal solu-
tion to the IP problem shown on page 209.

First iteration
Step 1. Initialization. Solve the LP relaxation associated with the IP problem.

The optimal tableau is:

x1 x2 x3 x4

0 0 20 5 440

a2 0 1 12

7
−1

7

24

7

a1 1 0 −5

7

1

7

25

7

OpenCourseWare, UPV/EHU

6.4. The branch and bound method 221

Set zLB = −∞ to initialize the lower bound.
Step 2. Branching. The optimal solution to the LP relaxation is not integer.

We choose the branching variable, x1 for instance, and create two new problems:
problem LP2 and problem LP3 (see page 212).

Step 3. Bounding. We solve the two LP problems created in Step 2 using the
sensitivity analysis and the dual simplex algorithm.

• Solving problem LP2. We add a slack variable to the constraint x1 ≤ 3 and
include it into the optimal tableau associated with the LP relaxation LPR.
This yields the following tableau:

x1 x2 x3 x4 x5

0 0 20 5 0 440

a2 0 1 12

7
−1

7
0 24

7

a1 1 0 −5

7

1

7
0 25

7

a5 1 0 0 0 1 3

We need to use elementary operations to write the third row in terms of the
new basis B = (a2 a1 a5). We operate like this: row 3 − row 2.

x1 x2 x3 x4 x5

0 0 20 5 0 440

a2 0 1 12

7
−1

7
0 24

7

a1 1 0 −5

7

1

7
0 25

7

a5 0 0 5

7
−1

7
1 −4

7

The tableau is not primal feasible; the dual simplex algorithm will be used
to find the optimal tableau for the problem LP2.

Operations Research. Linear Programming

222 Chapter 6. Integer Programming

x1 x2 x3 x4 x5

0 0 45 0 35 420

a2 0 1 1 0 −1 4

a1 1 0 0 0 1 3

a4 0 0 −5 1 −7 4

• Solving problem LP3. We multiply constraint x1 ≥ 4 by −1 to include it
in the optimal tableau associated with the problem LPR, −x1 ≤ −4, and
add the slack variable x5. This yields the following tableau:

x1 x2 x3 x4 x5

0 0 20 5 0 440

a2 0 1 12

7
−1

7
0 24

7

a1 1 0 −5

7

1

7
0 25

7

a5 −1 0 0 0 1 −4

To adjust the third row, we operate like this: row 3 + row 2.

x1 x2 x3 x4 x5

0 0 20 5 0 440

a2 0 1 12

7
−1

7
0 24

7

a1 1 0 −5

7

1

7
0 25

7

a5 0 0 −5

7

1

7
1 −3

7

The tableau is not primal feasible; the dual simplex algorithm will be used
to find the optimal tableau for the problem LP3.

OpenCourseWare, UPV/EHU

6.4. The branch and bound method 223

x1 x2 x3 x4 x5

0 0 0 9 28 428

a2 0 1 0 1

5

12

5

12

5

a1 1 0 0 0 −1 4

a3 0 0 1 −1

5
−7

5

3

5

Thereby, Problems LP2 and LP3 have been solved (Figure 6.1 on page 217
shows the optimal solutions).

Step 4. Pruning.
Problem LP2 is pruned by optimality, because zUB = 420 > zLB holds and

the solution is integer: x1 = 3 and x2 = 4. Since it is the first integer solution
found so far, it becomes the candidate solution, and we change the lower bound
to the new value: zLB = zUB = 420.

Problem LP3 is not pruned, because none of the conditions of Step 4 holds.
Since there are LP problems that can be branched out, we proceed with a new

iteration of the algorithm.

Second iteration
Step 2. Branching. We select problem LP3 to be branched out. We choose

variable x2, and create two new LP problems: problem LP4, by adding the con-
straint x2 ≤ 2 to problem LP3, and problem LP5, by adding the constraint x2 ≥ 3
(see page 214).

Step 3. Bounding. As in the first iteration, we solve the two LP problems just
created using the sensitivity analysis and the dual simplex algorithm. This time,
we use the optimal tableau associated with problem LP3 to solve problems LP4
and LP5 (see the solutions on Figure 6.1, page 217).

Step 4. Pruning. Problem LP5 is pruned by infeasibility. The optimal so-
lution to problem LP4 is not integer, and zUB = 423.33 > 420 = zLB . Thus,
problem LP4 is not pruned; it is examined further, because branching on LP4 may
yield a better feasible integer solution than the candidate solution. We proceed
with a new iteration of the algorithm at Step 2.

Third iteration
Step 2. Branching. We select problem LP4 to be branched out. We choose

variable x1, and create two new LP problems: problem LP6 and problem LP7 (see
models on page 215).

Operations Research. Linear Programming

224 Chapter 6. Integer Programming

Step 3. Bounding. We solve the two LP problems just created. This time,
we start from the optimal tableau associated with problem LP4 to solve problems
LP6 and LP7 (see the solutions on Figure 6.1, page 217).

Step 4. Pruning.
Problem LP6 is pruned by bound, because zUB = 410 < 420 = zLB holds.
Problem LP7 is also pruned by bound, since zUB = 400 < 420 = zLB holds.
No problem remains to be branched out. Therefore, the candidate solution is

the optimal solution to the IP problem.

x∗

1 = 3, x∗

2 = 4, z∗IP = zLB = 420.

�

6.5 0-1 integer programming
In practice, there are problems where all the variables are binary, and for the solu-
tion of which different algorithms have been proposed. In this section, we present
one which has basically the same structure as the branch and bound algorithm
introduced earlier.

Before we apply the algorithm to solve a 0-1 IP problem, we need to make
sure that the coefficients of the objective function satisfy the following:

0 ≤ c1 ≤ c2 ≤ · · · ≤ cn (6.1)

It is always possible to rewrite the 0-1 IP model and obtain a form that satisfies
the condition (6.1). Let us see how to proceed by means of an example.

Example. Consider the following 0-1 IP model:

max z = 6x1 − 4x2

subject to
3x1 + 2x2 ≤ 10

−x1 + x2 ≤ 17

x1, x2 = 0 or 1

Cost coefficients in the objective function do not satisfy the condition (6.1). To
obtain the required form, we proceed like this: we consider the absolute value of

OpenCourseWare, UPV/EHU

6.5. 0-1 integer programming 225

the cost coefficients and choose the minimum: min{|c1|, |c2|} = min{6, 4} = 4.
We replace the binary variable x2 by 1 − y1, because c2 is negative. If it was
positive, it should be replaced by y1. The next smaller is |c1| = 6; since it is
positive, we replace x1 by y2. Both y1 and y2 are also binary variables.

All the variables can now be reordered as needed to place the cost coefficients
in ascending order, so that the condition (6.1) holds.

max z = 4y1 + 6y2 − 4

subject to
−2y1 + 3y2 ≤ 8

−y1 − y2 ≤ 16

y2, y2 = 0 or 1

�

Definition 6.5.1 (0-1 relaxation problem) Given a 0-1 IP problem, the corre-
sponding 0-1 relaxation problem is obtained by ignoring all constraints, except
the ones which state that the variables are binary.

Definition 6.5.2 (A partial solution) Given a 0-1 IP problem, a solution where
the values of some variables are unspecified is called a partial solution.

Definition 6.5.3 (A completion of a partial solution) Given a partial solution to
a 0-1 IP problem, a completion of it is obtained by assigning a value to the vari-
ables with unspecified values in the partial solution.

Example. Consider the following 0-1 IP problem:

max z = x1 + 2x2 + 4x3

subject to
x1 + x2 + 2x3 ≤ 4

3x1 + x2 + 2x3 ≤ 5

x1, x2, x3 = 0 or 1

The corresponding 0-1 relaxation problem is the following:

Operations Research. Linear Programming

226 Chapter 6. Integer Programming

max z = x1 + 2x2 + 4x3

subject to
x1, x2, x3 = 0 or 1

For instance, x = (1, 1,−) is a partial solution to the 0-1 relaxation problem.
There are two possible completions of that partial solution: (1, 1, 0) and (1, 1, 1).
x = (0,−,−) is also a partial solution to the 0-1 relaxation problem, which has
the following four possible completions: (0, 1, 1), (0, 1, 0), (0, 0, 1) and (0, 0, 0).

It is easy to solve the 0-1 relaxation problem because all the constraints of
the original 0-1 IP problem have been ignored. Moreover, since all the cost coeffi-
cients are positive, it is clear that the optimal solution to the 0-1 relaxation problem
is x∗ = (1, 1, 1). If we check and see that it is not feasible for the original 0-1 IP
problem, that is, if it does not satisfy its constraints, then we can check the next
best solution to the 0-1 relaxation problem; we know how to compute it, because
the cost coefficients are placed in ascending order in the objective function. Thus,
we check the solution x = (0, 1, 1), the one that makes the objective value largest,
once x∗ = (1, 1, 1) has been discarded. In fact, we can order the solutions to the
0-1 relaxation problem from the best to the worst, and check orderly from best
to worst whether the solutions are feasible for the original 0-1 IP problem. This
implicit enumeration stops when a feasible solution is found.

�

The idea at the basis of the 0-1 branch and bound algorithm presented in the
next section is precisely to start at the optimal solution to the 0-1 relaxation prob-
lem, and check whether it satisfies the constraints of the original 0-1 IP problem.
The aim of branching is to look for the optimal solution to the 0-1 IP problem by
solving a sequence of 0-1 relaxation problems.

6.5.1 A 0-1 branch and bound algorithm
The algorithm presented in this section was designed to solve 0-1 IP problems
where the objective is to maximize. The cost coefficients in the objective function
must satisfy the condition 0 ≤ c1 ≤ c2 ≤ · · · ≤ cn before the algorithm is applied.

* Step 1. Initialization
Consider the optimal solution to the 0-1 relaxation problem, x = (1, . . . , 1),
and check whether it satisfies the constraints of the original 0-1 IP problem.

OpenCourseWare, UPV/EHU

6.5. 0-1 integer programming 227

If that is the case, (1, . . . , 1) is the optimal solution to the original 0-1 IP
problem. Stop.

Otherwise, check whether the solution x = (0, 1, . . . , 1) satisfies the con-
straints of the original 0-1 IP problem. If that is the case, (0, 1, . . . , 1) is the
optimal solution to the original 0-1 IP problem. Stop.

Otherwise, initialize the lower bound zLB = z(x), where x = (0, . . . , 0).

The upper bound associated with the 0-1 relaxation problem is zUB =
z(xUB), where xUB = (0, 1, . . . , 1). Assign the index k = 1 to the problem.

* Step 2. Branching

Select a problem among the problems that can be branched out. Create two
new problems by adding the constraints xk = 0 and xk = 1 to the problem
selected.

* Step 3. Bounding

For each of the two newly created problems, consider the completion xUB

which involves assigning the value 0 to the variable xk+1 and the value 1 to
the rest of the unspecified variables. Compute the objective value zUB for
each of the completions. Assign the index k = k + 1 to the new problems.

* Step 4. Pruning

A problem may be pruned and therefore eliminated from further considera-
tion, in the following cases:

(1) Pruned by bound. zUB ≤ zLB .

(2) Pruned by optimality. zUB > zLB and the completion xUB satisfies the
constraints of the original 0-1 IP problem. Change the lower bound to
the new value, zLB =zUB; the solution xUB, which is associated with
the new lower bound, is the new candidate solution.

(3) Pruned by infeasibility. None of the completions is a feasible solution
to the original 0-1 IP problem.

If there are problems that can be branched out, then go to Step 2.

Otherwise, the candidate solution is the optimal solution to the 0-1 IP prob-
lem. Stop.

Operations Research. Linear Programming

228 Chapter 6. Integer Programming

Example. We now illustrate the 0-1 branch and bound algorithm by applying
it to the knapsack problem of the example on page 207.

max z = 15x1 + 25x2 + 12x3 + 10x4

subject to
3x1 + 6x2 + 5x3 + 5x4 ≤ 12

x1, x2, x3, x4 = 0 or 1

In order to place the cost coefficients of the objective function in ascending
order, we make these changes in variables: x4 = y1, x3 = y2, x1 = y3 and x2 =
y4. The changes give us the following 0-1 IP problem (see also its corresponding
0-1 relaxation problem):

0-1 IP problem 0-1 Relaxation Problem: 0-1 RP

max z = 10y1 + 12y2 + 15y3 + 25y4 max z = 10y1 + 12y2 + 15y3 + 25y4

subject to subject to

5y1 + 5y2 + 3y3 + 6y4 ≤ 12 y1, y2, y3, y4 = 0 or 1

y1, y2, y3, y4 = 0 or 1

The entire solution sequence is summarized in a diagram (see Figure 6.2 on
page 232). All the 0-1 relaxation problems created while looking for the optimal
solution to the original 0-1 IP problem using the 0-1 branch and bound algorithm,
a partial solution to each of them, a completion and its corresponding upper bound
are shown in the diagram.

First iteration
Step 1. Initialization.
The optimal solution to the 0-1 relaxation problem, (1, 1, 1, 1), is not feasible

for the original 0-1 IP problem because it does not satisfy its constraint.
The next best solution to the 0-1 relaxation problem is (0, 1, 1, 1), but it is also

infeasible for the original 0-1 IP problem because, likewise, it does not satisfy its
constraint. The objective value at this solution is zUB = 52.

We assign the index k = 1 to the problem, and initialize the lower bound,
zLB = 0.

Step 2. Branching.

OpenCourseWare, UPV/EHU

6.5. 0-1 integer programming 229

We create two new problems by adding the constraints y1 = 0 and y1 =
1 to the 0-1 relaxation problem. This yields the new problems RP2 and RP3,
respectively.

Problem RP2 Problem RP3

max z = 10y1 + 12y2 + 15y3 + 25y4 max z = 10y1 + 12y2 + 15y3 + 25y4

subject to subject to

y1 = 0 y1 = 1

y2, y3, y4 = 0 or 1 y2, y3, y4 = 0 or 1

Step 3. Bounding.
The completion yUB = (0, 0, 1, 1) for problem RP2 provides an upper bound

for the 0-1 IP problem at its corresponding resolution branch: zUB = 40.
The completion yUB = (1, 0, 1, 1) for problem RP3 provides an upper bound

for the 0-1 IP problem at its corresponding resolution branch: zUB = 50.
We assign the index k = 2 to these two problems.
Step 4. Pruning.
The completion yUB = (0, 0, 1, 1) for problem RP2 satisfies the constraint of

the original 0-1 IP problem. Moreover, since zUB = 40 > 0 = zLB holds, the
completion becomes the candidate solution. Problem RP2 is pruned by optimality,
and the lower bound changes to the new value, zLB = 40.

The completion yUB = (1, 0, 1, 1) for problem RP3, however, violates the
constraint of the original 0-1 IP problem. Moreover, we can check that problem
RP3 is not infeasible, because there exists at least one feasible completion for it;
one that satisfies the constraint of the original 0-1 IP problem, say y = (1, 0, 0, 0),
for instance. Since zUB = 50 > zLB , none of the conditions for pruning holds.
Therefore, RP3 is not pruned, and we proceed with a new iteration of the algo-
rithm.

Second iteration.
We consider problem RP3. By branching on y2, we create two additional

problems: adding the constraint y2 = 0 we get problem RP4, and adding the
constraint y2 = 1 we get problem RP5.

Operations Research. Linear Programming

230 Chapter 6. Integer Programming

Problem RP4 Problem RP5

max z = 10y1 + 12y2 + 15y3 + 25y4 max z = 10y1 + 12y2 + 15y3 + 25y4

subject to subject to

y1 = 1 y1 = 1

y2 = 0 y2 = 1

y3, y4 = 0 or 1 y3, y4 = 0 or 1

We compute the completions and the objective values for problems RP4 and
RP5 as specified in the algorithm.

For problem RP4, we have the completion yUB = (1, 0, 0, 1) with zUB = 35.
Problem RP4 is pruned by bound, because zUB < zLB = 40.

For problem RP5, we have the completion yUB = (1, 1, 0, 1) with zUB = 47.
Problem RP5 is not pruned.

We assign the index k = 3 to these two problems. Since RP5 was not pruned,
we proceed with a new iteration of the algorithm.

Third iteration.
We consider problem RP5. By branching on y3, we create two additional

problems: adding the constraint y3 = 0 we get problem RP6, and adding the
constraint y3 = 1 we get problem RP7.

Problem RP6 Problem RP7

max z = 10y1 + 12y2 + 15y3 + 25y4 max z = 10y1 + 12y2 + 15y3 + 25y4

subject to subject to

y1 = 1 y1 = 1

y2 = 1 y2 = 1

y3 = 0 y3 = 1

y4 = 0 or 1 y4 = 0 or 1

We compute the completions and their corresponding objective values for
problems RP6 and RP7.

OpenCourseWare, UPV/EHU

6.5. 0-1 integer programming 231

For problem RP6, we have the completion yUB = (1, 1, 0, 0) with zUB = 22.
Problem RP6 is pruned by bound, because zUB < zLB = 40.

For problem RP7, we have the completion yUB = (1, 1, 1, 0) with zUB = 37.
Problem RP7 is pruned by bound, because zUB < zLB = 40.

We assign the index k = 4 to these two problems.
The 0-1 branch and bound algorithm stops, because there is no problem to be

branched out. Therefore, the solution associated with the lower bound zLB = 40,
that is to say, the candidate solution, is the optimal solution to the 0-1 IP problem:
yUB = (0, 0, 1, 1).

Undoing the change of variables, we obtain the optimal solution to the knap-
sack problem of the example:

x∗

1 = 1, x∗

2 = 1, x∗

3 = 0, x∗

4 = 0, z∗ = 40.

Figure 6.2 summarizes the entire solution sequence in a diagram.
�

Operations Research. Linear Programming

232 Chapter 6. Integer Programming

0-1 RP

Problem RP2 Problem RP3

Problem RP4 Problem RP5

Problem RP6 Problem RP7

y = (0,−,−,−) y = (1,−,−,−)

y = (1, 0,−,−) y = (1, 1,−,−)

y = (1, 1, 0,−) y = (1, 1, 1,−)

yUB = (0, 1, 1, 1)

yUB = (0, 0, 1, 1) yUB = (1, 0, 1, 1)

yUB = (1, 0, 0, 1) yUB = (1, 1, 0, 1)

yUB = (1, 1, 0, 0) yUB = (1, 1, 1, 0)

zUB = 52

zUB = 40 zUB = 50

zUB = 35 zUB = 47

zUB = 22 zUB = 37

zLB = 40

y1 = 0 y1 = 1

y2 = 0 y2 = 1

y3 = 0 y3 = 1

PrunedPruned

Pruned

Pruned
Candidate sol.

Figure 6.2: Diagram of the entire solution sequence of the knapsack problem of
the example.

OpenCourseWare, UPV/EHU

