
Chapter 3

Duality

In the development of the linear programming theory, duality plays an important
role both theoretically and in practice. Every linear problem has another linear
problem associated, which is called “the dual”. As we will see, when we solve
a linear problem, we are simultaneously solving its dual; in fact, the two optimal
solutions are present in the optimal simplex tableau.

These are some of the reasons why it is important to take duality into account:

1. The convergence of the simplex algorithm is more sensitive to the number
of constraints than to the number of variables of the problem. The fact that
the linear problem and its associated dual are solved simultaneously implies
that the problem with less constraints can be solved and that the optimal
solutions to both can be obtained in a more efficient way.

2. The study of the duality theory provides rich economic interpretations; the
solution to the dual provides useful information about the original linear
problem.

3. Taking into consideration the duality properties, a new algorithm has been
developed to solve linear problems: the dual simplex algorithm. As we will
see in future chapters, this new algorithm has important practical applica-
tions in sensitivity analysis and integer programming, for instance.

3.1 The dual problem
Definition 3.1.1 (Maximization symmetric form) A linear problem is said to be
written in maximization symmetric form if
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88 Chapter 3. Duality

• The objective is in maximization form

• All the constraints are ≤

• All variables are nonnegative

Example. Consider the following linear problem:

max z = x1 − 3x2 + x3

subject to
x1 + x2 + x3 ≥ 2

−x1 + 2x2 − x3 ≤ 3

x1 − x2 + 2x3 = −1

x1, x2, x3 ≥ 0

The problem in maximization symmetric form:

max z = x1 − 3x2 + x3

subject to
−x1 − x2 − x3 ≤ −2

−x1 + 2x2 − x3 ≤ 3

x1 − x2 + 2x3 ≤ −1

−x1 + x2 − 2x3 ≤ 1

x1, x2, x3 ≥ 0

�

Definition 3.1.2 (Minimization symmetric form) A linear problem is said to be
written in minimization symmetric form if

• The objective is in minimization form

• All the constraints are ≥

• All variables are nonnegative
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3.1. The dual problem 89

Example. Consider the following linear problem:

max z = x1 − x2

subject to
3x1 + 2x2 ≤ 1

x1 − 2x2 ≥ 3

x1, x2 ≥ 0

The problem in minimization symmetric form:

min (−z) = −x1 + x2

subject to
−3x1 − 2x2 ≥ −1

x1 − 2x2 ≥ 3

x1, x2 ≥ 0

�

3.1.1 Primal-dual relationship

Given a linear problem in maximization symmetric form:

max z = cTx

subject to
Ax ≤ b

x ≥ 0

We refer to it as the primal problem. The following problem given in minimization
symmetric form is called the corresponding dual problem:

min G = bTy

subject to
ATy ≥ c

y ≥ 0
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Example. Consider the following linear problem.

max z = 2x1 − x2 + 3x3

subject to
x1 − x2 + x3 ≤ 2

3x1 − x2 + 2x3 ≤ 1

x1, x2, x3 ≥ 0

Its corresponding dual problem is the following:

min G = 2y1 + y2

subject to
y1 + 3y2 ≥ 2

−y1 − y2 ≥ −1

y1 + 2y2 ≥ 3

y1, y2 ≥ 0

�

3.1.2 Primal-dual correspondence
For any primal problem and the corresponding dual problem, there is a direct cor-
respondence between the parameters of the problems, which may be summarized
as follows:

• The size of the constraint matrix A of the primal problem is m × n; there
are m constraints and n variables in it. The constraint matrix of the dual
problem is the transpose of the constraint matrix of the primal, AT , and
therefore, the dual has n constraints andm variables.

• The right hand side vector b of the primal problem is the vector of cost
coefficients of the dual problem.

• The vector of cost coefficients c of the primal problem is the right hand side
vector of the dual problem.

• The number of constraints of the primal problem is equal to the number of
variables of the dual problem.

• The number of variables of the primal problem is equal to the number of
constraints of the dual problem.
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3.1. The dual problem 91

3.1.3 Duality. The general case

In general, many linear problems contain ≤, = or ≥ constraints. The variables
may also be ≥ 0, ≤ 0 or unrestricted in sign. In order to compute the dual of
any linear problem, we should convert it to the maximization symmetric form and
derive from it the dual problem associated. However, in practice it is possible
to find immediately the associated dual problem of any given linear problem by
using the correspondences of Table 3.1.

Objective function: max ⇐⇒ Objective function: min

ith constraint is ≤ bi ⇐⇒ ith variable is ≥ 0

ith constraint is = bi ⇐⇒ ith variable is unrestricted

ith constraint is ≥ bi ⇐⇒ ith variable is ≤ 0

ith variable is ≥ 0 ⇐⇒ ith constraint is ≥ bi

ith variable is unrestricted ⇐⇒ ith constraint is = bi

ith variable is ≤ 0 ⇐⇒ ith constraint is ≤ bi

Table 3.1: Primal-dual correspondences

In this section we prove some of the correspondences of the table; the rest can
be proved likewise.

1st case. If all the constraints in a problem given in maximization form are ≥,
then the variables are ≤ 0 in the associated dual problem (third correspon-
dence of the table). Consider the linear problem:

max z = cTx

subject to
Ax ≥ b

x ≥ 0
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The dual of this problem is:

min G = bTy

subject to
ATy ≥ c

y ≤ 0

Proof. We convert the primal problem to the maximization symmetric form
by multiplying the set of constraints by −1.

max z = cTx

subject to
−Ax ≤ −b

x ≥ 0

By using the primal-dual correspondences shown previously (see subsection
3.1.1), we get the dual problem:

min G = −bTy

subject to
−ATy ≥ cT

y ≥ 0

Substituting y = −y, the dual problem may be also expressed as follows:

min G = bTy

subject to
ATy ≥ cT

y ≤ 0

�

2nd case. If all the constraints in a problem given in maximization form are =,
then the variables are unrestricted in sign in the associated dual problem
(second correspondence of the table). Consider the linear problem:

max z = cTx

subject to
Ax = b

x ≥ 0
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The dual of this problem is:

min G = bTy

subject to
ATy ≥ c

y : unrestricted

Proof. We convert the primal problem to the maximization symmetric form
by writing the equality constraint set as two inequalities:

max z = cTx

subject to
Ax ≤ b

−Ax ≤ −b

x ≥ 0

The dual problem is as follows:

min G = (bT , −bT )





u

v





subject to

(AT , −AT )





u

v



 ≥ c

u, v ≥ 0

being vectors u and v m-dimensional. The dual problem may be written
like this:

min G = bT (u− v)

subject to
AT (u− v) ≥ c

u,v ≥ 0
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Substituting y = u− v, we obtain the dual problem written as follows:

min G = bTy

subject to
ATy ≥ c

y : unrestricted

The variables of the dual problem are unrestricted in sign, because they are
the subtraction of two positive variables.

Example. Consider the following primal problem.

max z = x1 − 4x2 − x3

subject to
x1 + x2 − x3 ≥ 4

2x1 + 3x2 − 5x3 ≤ 2

2x1 − x2 + 2x3 = 6

x1 ≤ 0, x2 ≥ 0, x3 : unrestricted

The corresponding dual problem is the following (see correspondences of Table
3.1).

min G = 4y1 + 2y2 + 6y3

subject to
y1 + 2y2 + 2y3 ≤ 1

y1 + 3y2 − y3 ≥ −4

−y1 − 5y2 + 2y3 = −1

y1 ≤ 0, y2 ≥ 0, y3 : unrestricted

�

3.2 Duality proofs
In this section we analyze the main theorems of duality, which establish impor-
tant relationships between the primal and dual problems and their solutions. All
theorems are stated for the primal-dual symmetric forms.
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Primal Dual

max z = cTx min G = bTy

subject to subject to

Ax ≤ b ATy ≥ c

x ≥ 0 y ≥ 0

Theorem 3.2.1 The dual of the dual is the primal.

Proof. Consider the following linear problem:

min G = bTy

subject to
ATy ≥ c

y ≥ 0

We rewrite the problem in maximization symmetric form,

−max (−G) = −bTy

subject to
−ATy ≤ −c

y ≥ 0

and compute its dual, according to the primal-dual correspondence:

−min (−z) = −cTx

subject to
−Ax ≥ −b

x ≥ 0

Transforming the objective function and the set of constraints, we get the primal
problem.

max z = cTx

subject to
Ax ≤ b

x ≥ 0
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�

We can conclude from the previous theorem that, if the primal objective func-
tion is minimized, then the dual objective function is maximized. Therefore, cor-
respondences in Table 3.1 are read from right to left when calculating the dual of
a minimization problem.

Example. Consider the following primal problem:

min z = x1 − 4x2 − x3

subject to
x1 + x2 − x3 ≥ 4

2x1 + 3x2 − 5x3 ≤ 2

2x1 − x2 + 2x3 = 6

x1 ≤ 0, x2 ≥ 0, x3 : unrestricted

By using the correspondences of Table 3.1 we get the associated dual problem.

max G = 4y1 + 2y2 + 6y3

subject to
y1 + 2y2 + 2y3 ≥ 1

y1 + 3y2 − y3 ≤ −4

−y1 − 5y2 + 2y3 = −1

y1 ≥ 0, y2 ≤ 0, y3 : unrestricted

�

Theorem 3.2.2 (Weak duality) Let x and y be any feasible solutions to the pri-
mal and dual problems, respectively. The following inequality holds:

z = cTx ≤ bTy = G.

Proof.

Since x is a feasible solution to the primal problem, Ax ≤ b and x ≥ 0 are satisfied.
Since y is a feasible solution to the dual problem, ATy ≥ c and y ≥ 0 are satisfied.

Multiplying Ax ≤ b on the left by yT , and ATy ≥ c by xT , we get:

yTAx ≤ yTb = bTy.
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3.2. Duality proofs 97

xTATy ≥ xTc = cTx.

Since xTATy = yTAx, the following holds:

z = cTx ≤ yTAx ≤ bTy = G.

�

The weak duality theorem indicates that the maximum objective value for the
primal problem is a lower bound on the minimum objective value of the dual
problem. Similarly, the minimum objective value for the dual problem is an upper
bound on the maximum objective value of the primal problem. The following
corollaries are immediate consequences of the previous theorem.

Corollary 3.2.1 If x∗ and y∗ are feasible solutions to the primal and dual prob-
lem such that cTx∗ = bTy∗ holds, then x∗ and y∗ are optimal solutions to the
primal and dual problems respectively.

Proof. The weak duality theorem states that, for any feasible solutions x and y to
the primal and dual problem, the following holds:

cTx ≤ bTy.

Since y∗ is a solution to the dual problem, cTx ≤ bTy∗ holds. cTx∗ = bTy∗

is verified, and therefore, for any solution x to the primal problem the following
holds:

cTx ≤ cTx∗.

We conclude that x∗ is an optimal solution to the primal problem.
Similarly, since bTy∗ = cTx∗ ≤ bTy, for any solution y to the dual problem

the following holds:
bTy∗ ≤ bTy.

We conclude that y∗ is an optimal solution to the dual problem.
�

Corollary 3.2.2 If the primal problem is feasible and unbounded, the dual prob-
lem is infeasible.

Proof. Taking into account that cTx ≤ bTy holds for any feasible solutions x
and y, if the primal objective value is unbounded, then there does not exist any
solution y to the dual problem that is an upper bound of the primal problem. �

The following corollary is proved in a similar way.
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Corollary 3.2.3 If the dual problem is feasible and unbounded, the primal prob-
lem is infeasible.

If the primal problem is infeasible, the dual problem may be either infeasible
or unbounded. Similarly, if the dual problem is infeasible, the primal problem
may be either infeasible or unbounded.

Example. Let us check Corollary 3.2.2 for the following primal and dual
problems. In this case, the primal is unbounded and the dual infeasible.

max z = 3x1 + 2x2 min G = 2y1 + 4y2

subject to subject to

−2x1 + x2 ≤ 2 −2y1 + 2y2 ≥ 3

2x1 + x2 ≥ 4 y1 + y2 ≥ 2

x1, x2 ≥ 0 y1 ≥ 0, y2 ≤ 0

The graphical solution shows that the primal problem is unbounded.

x1

x2

−2x1 + x2 = 2

2x1 + x2 = 4

max

The feasibility region for the dual problem is empty; that is, the dual problem
is infeasible.
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y1

y2

−2y1 + 2y2 = 3 y1 + y2 = 2

�

Theorem 3.2.3 (The fundamental principle of duality) If an optimal solution
x∗ to the primal problem exists, then an optimal solution y∗ to the dual prob-
lem exists. Similarly, if an optimal solution y∗ to the dual problem exists, then an
optimal solution x∗ to the primal problem exists. In both cases

z∗ = cTx∗ = bTy∗ = G∗

holds.

Example. Consider the following primal and dual problems:

max z = 2x1 + 3x2 min G = 2y1 + 3y2 + 5y3

subject to subject to

x1 + x2 ≤ 2 y1 + 2y2 + y3 ≥ 2

2x1 − x2 ≤ 3 y1 − y2 + 3y3 ≥ 3

x1 + 3x2 ≤ 5 y1, y2, y3 ≥ 0

x1, x2 ≥ 0

For any primal and dual feasible solutions z ≤ G holds. For instance, we
may verify that xT = (1, 1) is a primal feasible solution (it satisfies the primal
constraints), and yT = (1, 1, 1) is a dual feasible solution; by substituting the
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solutions into the respective objective functions, we may verify that z = 5 ≤ 10 =
G holds, as the weak duality theorem predicts.

The optimal primal and dual solutions are the following:

x∗T = (
1

2
,
3

2
), y∗T = (

3

2
, 0,

1

2
).

The objective value for both problems is the same, z∗ = 11

2
= G∗. �

3.3 The principle of complementary slackness
Applying the principle of complementary slackness, we can use the primal opti-
mal solution to solve the corresponding dual problem, and viceversa. The condi-
tions are stated in the following theorem.

Theorem 3.3.1 (Complementary slackness) Any feasible solutions to the pri-
mal and dual problems x∗ and y∗ are optimal if and only if the following holds:

x∗T (ATy∗ − c) + y∗T (b−Ax∗) = 0.

From the interpretation of this theorem we obtain the complementary slack-
ness conditions. Remember that the primal and dual problems are given in sym-
metric form.

3.3.1 Interpretation of the complementary slackness conditions
We may write the primal and dual constraints in the following way, being x∗ and
y∗ optimal solutions to the respective problems:

ATy∗ − c ≥ 0.

b−Ax∗ ≥ 0.

Since the primal and dual optimal solutions x∗ and y∗ are positive, by multi-
plying the previous inequalities on the left by x∗T and y∗T , respectively, we get:

x∗T (ATy∗ − c) ≥ 0.

y∗T (b−Ax∗) ≥ 0.
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3.3. The principle of complementary slackness 101

The complementary slackness theorem states that the sum of the left hand side
of the two previous inequalities is zero. Taking into account that the two addends
are greater than or equal to zero, we conclude that each of them must be zero, that
is,

x∗T (ATy∗ − c) = 0.

y∗T (b−Ax∗) = 0.

According to the foregoing equations, the product of two nonnegative factors
is zero; this implies that if one of them is not zero, then the other must be. Thus,
we obtain the following conclusions, which enable us to compute the optimal
solution to one of the problems from the optimal solution to the other.

1. If a primal variable is positive, that is to say, greater than zero, then the
corresponding constraint in the dual must hold with equality.

x∗ > 0 ⇒ ATy∗ − c = 0.

2. If a constraint of the primal is not binding, that is to say, if the equality does
not hold, then the corresponding dual variable must be zero.

Ax∗ < b ⇒ y∗ = 0.

3. If a dual variable is positive, that is to say, greater than zero, then the corre-
sponding constraint in the primal must hold with equality.

y∗ > 0 ⇒ Ax∗ − b = 0.

4. If a constraint of the dual is not binding, that is to say, if the equality does
not hold, then the corresponding primal variable must be zero.

ATy∗ > c ⇒ x∗ = 0.

Example. Consider the following linear problem:

max z = 3x1 + x2 − 2x3

subject to
x1 + 2x2 + x3 ≤ 5

2x1 − x2 + 3x3 ≤ 4

x1, x2, x3 ≥ 0
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The optimal solution to the problem is x∗T = (13
5
, 6

5
, 0). The dual problem is

the following:

min G = 5y1 + 4y2

subject to
y1 + 2y2 ≥ 3

2y1 − y2 ≥ 1

y1 + 3y2 ≥ −2

y1, y2 ≥ 0

We introduce three slack variables to the problem and get:

min G = 5y1 + 4y2 + 0y3 + 0y4 + 0y5

subject to

y1 + 2y2 −y3 = 3

2y1 − y2 −y4 = 1

y1 + 3y2 −y5 = −2

y1, y2, y3, y4, y5 ≥ 0

Using the interpretation of the theorem of complementary slackness, we com-
pute the optimal solution to the dual problem, proceeding like this:

Primal variables Dual constraints

x∗

1
= 13

5
> 0 ⇒ y∗

1
+ 2y∗

2
= 3 ⇒ y∗

3
= 0

x∗

2
= 6

5
> 0 ⇒ 2y∗

1
− y∗

2
= 1 ⇒ y∗

4
= 0

x∗

3
= 0 ⇒ y∗

1
+ 3y∗

2
− y∗

5
= −2

Primal constraints Dual variables
13

5
+ 2× 6

5
= 5 ⇒ we compute y∗

1

2× 13

5
− 6

5
= 4 ⇒ we compute y∗

2

We substitute the values of y∗
3
and y∗

4
in the dual constraint set, and we have:

y∗
1
+ 2y∗

2
= 3

2y∗
1
− y∗

2
= 1

y∗
1
+ 3y∗

2
− y∗

5
= −2
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By solving the system of linear equations, we obtain the optimal solution to the
dual problem.

y∗
1
= 1, y∗

2
= 1, y∗

3
= 0, y∗

4
= 0, y∗

5
= 6.

�

3.4 The optimal solution to the dual problem
Theorem 3.4.1 Consider the symmetric form of duality, and let B be an optimal
basis for the primal problem. Then, y∗T = cTBB

−1 is an optimal solution to the
dual problem.

Proof. We consider the constraints of the primal problem in maximization
symmetric form, and add vector xs of slack variables, which yields:

Ax+ Ixs = b

x,xs ≥ 0

If B is an optimal basis for the primal problem, and xB an optimal basic
feasible solution, then zj − cj ≥ 0 holds for each vector aj of matrixA.

zj = cTByj = cTBB
−1aj .

Since B is optimal, zj ≥ cj holds for each vector aj of matrix A, that is,

cTBB
−1A ≥ cT .

The foregoing inequality can be equally written as follows:

AT (cTBB
−1)T ≥ c,

which is the dual constraint set. Thus, y∗ = (cTBB
−1)T is a solution to the dual

problem.
In order to check the feasibility of the solution, we compute the zj − cj corre-

sponding to the vectors of submatrix I.

cTBB
−1I ≥ cTI .

Since vector xs corresponds to slack variables, cI = 0 holds and thus:

cTBB
−1I = cTBB

−1 ≥ 0T .
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Therefore, all the components of vector y∗ = (cTBB
−1)T are nonnegative.

We next show that the solution y∗ is an optimal solution to the dual problem.
We prove it by checking that the primal problem and the dual problem have the
same objective value.

z∗ = cTBxB = cTBB
−1b = bT (cTBB

−1)T = bTy∗ = G∗.

Therefore y∗ = (cTBB
−1)T is an optimal solution to the dual problem. �

3.4.1 A solution to the dual problem in the tableau
We turn now to see that once the primal problem is solved, an optimal solution to
the dual problem is readily obtainable in the optimal tableau.

From Theorem 3.4.1 we know that if B be is an optimal basis for the primal
problem, then y∗T = cTBB

−1 is an optimal solution to the dual problem. We now
show that such vector appears in the optimal tableau at row zero (row of reduced
cost coefficients zj − cj), where the identity matrix I appeared initially.

zj − cj = cTBB
−1aj − cj.

If we compute all the zj − cj of the corresponding vectors in this identity
matrix, we get the following vector:

cTBB
−1I− cTI = cTBB

−1 − cTI .

Therefore, since y∗T = cTBB
−1 is the optimal solution to the dual problem, we

need to add cTI to the reduced cost coefficients zj − cj to obtain it, where cI is the
m-vector representing the cost coefficients of the variables corresponding to the
columns of the original identity matrix. Two cases may be distinguished:

• If the columns of matrix I correspond to slack variables, then cI = 0 holds.

• If there are artificial variables in the columns corresponding to the initial
matrix I, then the cost coefficients of the artificial variables areM , and they
appear in vector cI , due to the penalty of the objective function.

Example. Consider the problem of page 101.

max z = 3x1 + x2 − 2x3

subject to
x1 + 2x2 + x3 ≤ 5

2x1 − x2 + 3x3 ≤ 4

x1, x2, x3 ≥ 0
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We add two slack variables to the problem and construct the initial tableau.

x1 x2 x3 x4 x5

−3 −1 2 0 0 0

a4 1 2 1 1 0 5

a5 2 −1 3 0 1 4

By applying the simplex algorithm, we obtain the following optimal tableau:

x1 x2 x3 x4 x5

0 0 6 1 1 9

a2 0 1 −1

5

2

5
−1

5

6

5

a1 1 0 7

5

1

5

2

5

13

5

The optimal solution to the primal problem is:

x∗

1
=

13

5
, x∗

2
=

6

5
, x∗

3
= 0, z∗ = 9.

Let us extract the optimal solution to the dual problem directly from the op-
timal tableau computed for the primal problem. The initial identity matrix, B =
I = (a4, a5), corresponds to the two slack variables. In the optimal tableau, B−1

appears at the columns corresponding to the variables x4 and x5, and the optimal
solution to the dual problem is obtained from the same columns in row zero.

(z4 − c4, z5 − c5) = cTBB
−1I− cTI = (1, 1)− cTI .

Since cTI = (c4 , c5) = (0, 0), the optimal solution to the dual problem is :

y∗T = cTBB
−1 = (1, 1).

The optimal objective value of the dual problem is G∗ = 9. �

Example. Consider the following linear problem:

min z = x1 + 2x2

subject to
4x1 + 3x2 ≤ 12

x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

x1, x2 ≥ 0
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To solve the problem with the simplex algorithm, besides adding slack vari-
ables, we need to add two artificial variables, w1 and w2.

max (−z) = −x1 − 2x2 + 0x3 + 0x4 + 0x5 −Mw1 −Mw2

subject to

4x1 + 3x2 +x3 = 12

x1 + 3x2 −x4 +w1 = 6

2x1 + x2 −x5 +w2 = 4

x1, x2, x3, x4, x5, w1, w2 ≥ 0

The initial canonical basis is: B = I = (a3, aw1, aw2).

x1 x2 x3 x4 x5 w1 w2

−3M + 1 −4M + 2 0 M M 0 0 −10M

0 a3 4 3 1 0 0 0 0 12 1

−M aw1 1 3 0 −1 0 1 0 6

−M aw2 2 1 0 0 −1 0 1 4 1

3

− 5

3
M +

1

3
0 0 − 1

3
M +

2

3
M

4

3
M − 2

3
0 −2M − 4

0 a3 3 0 1 1 0 −1 0 6 9

5

−2 a2
1

3
1 0 −1

3
0 1

3
0 2 1

5

−M aw2
5

3
0 0 1

3
−1 −1

3
1 2

0 0 0 3

5

1

5
M − 3

5
M − 1

5
− 22

5

0 a3 0 0 1 2

5

9

5
−2

5
−9

5

12

5

−2 a2 0 1 0 −2

5

1

5

2

5
−1

5

8

5

−1 a1 1 0 0 1

5
−3

5
−1

5

3

5

6

5

The optimal solution to the primal problem is:

x∗

1
=

6

5
, x∗

2
=

8

5
, −z∗ = −

22

5
⇒ z∗ =

22

5
.
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Let us obtain the optimal solution to the dual problem from the optimal sim-
plex tableau. The identity matrix in the first tableau is in the columns correspond-
ing to the variables x3, w1 and w2. In the same columns of the optimal tableau we
find B−1, as well as the optimal solution to the dual problem in row zero.

(z3 − c3, zw1
− cw1

, zw2
− cw2

) = cTBB
−1I− cTI = (0, M −

3

5
, M −

1

5
).

Since cTI = (c3 , cw1
, cw2

) = (0, −M, −M), by adding these cost coefficients
we obtain:

y∗T = cTBB
−1 − cTI + cTI = (0, M −

3

5
, M −

1

5
) + (0, −M, −M).

We would say that the optimal solution to the dual problem is:

y∗T = (0,−
3

5
,−

1

5
).

However, the sign of the variables has to be verified. If we write the dual
problem, we will see that variables y2 and y3 are nonnegative. In this case, the
values obtained from the optimal tableau are negative. The reason for this is that
the transformation applied to the objective function of the primal problem, before
using the simplex algorithm, has an effect in the reduced cost coefficients zj − cj
of row zero. In this example, the original objective function is in minimization
form, and we transform it to the maximization form; that is why the sign of the
variables is not correct. Hence, the optimal solution to the dual problem is:

y∗
1
= 0, y∗

2
=

3

5
, y∗

3
=

1

5
, G∗ =

22

5
.

�

If we transform a constraint in a linear model by multiplying it by −1 before
applying the simplex algorithm, the sign of the value in row zero that will be
assigned to the corresponding dual variable will be affected. This change of sign
may be explained analyzing the primal-dual correspondences of Table 3.1 on page
91. We can state that the absolute value of the components of vector cTBB

−1 are
equal to the absolute value of the optimal values of the dual variables.

3.5 Economic interpretation of duality
The optimal solution to a linear model determines the optimal resource allocation
to maximize revenue, when resources are limited. In this section we will see
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that the optimal solution to the dual model gives us useful information about the
convenience of changing the amount of resources available (the right-hand-side
of the constraints). We now introduce the concept of shadow price, which helps
to make interesting economic interpretations.

3.5.1 Shadow prices
Consider a linear model and its optimal basisB. Let x∗ be the optimal solution to
that primal problem, and z∗ its corresponding optimal objective value. Similarly,
let y∗ be the optimal solution to the dual problem, and G∗ its corresponding op-
timal objective value. Note that x∗, z∗, y∗ and G∗ are computed in terms of the
optimal basis B.

Let us assume that the right-hand-side vector b changes to b + Δb. We will
analyze the effect the change has on all the calculations in the tableau correspond-
ing to the optimal basis B, assuming that the current basis remains optimal (the
current basic feasible solution remains feasible).

• The new basic feasible solution is:
∧

xB= B−1(b+Δb) = xB +B−1Δb.

• The change in the right-hand-side vector does not have any effect on the
values zj − cj of row zero.

zj − cj = cTBB
−1aj − cj .

• The objective values of the primal and dual problems change, according to
the variations on vector b (that is, the increase/decrease specified by Δb).

∧

G
∗

= y∗T (b+Δb) = y∗Tb+ y∗TΔb = G∗ + y∗TΔb = z∗ + y∗TΔb.

Consequently, if a change in vector b does not violate optimality, that is, if
the new basic solution

∧

xB remains feasible, the solution will be affected in the
following way:

• The optimal solution to the dual problem remains the same.

• The optimal solution to the primal problem changes. The variation is spec-
ified by B−1Δb.

OpenCourseWare, UPV/EHU



3.5. Economic interpretation of duality 109

• The primal and dual objective values increase/decrease in y∗TΔb.

In summary, if the right-hand-side vector changes and
∧

xB= B−1(b+Δb) ≥ 0,
∧

xB is the optimal solution to the primal problem and y∗ remains optimal to the dual
problem. The optimal objective value for both problems increases y∗TΔb over its
original optimal value.

In order to interpret the meaning of each of the dual variables, we assume that
Δbi = 1 and all the rest are zero. Thus, the objective value is increased:

y∗TΔb = (y∗
1
, . . . , y∗i , . . . , y

∗

m)























0
...

1
...

0























= y∗i .

Thus, if the ith right-hand-side (ith resource) is increased in one unit,Δbi = 1,
and all the rest of the resources remain unchanged, then the optimal value of the
dual variable y∗i is the rate of change (increase) of the optimal objective value.
The following definition states when the optimal dual variables are considered to
be shadow prices.

Definition 3.5.1 (Shadow price) The optimal dual variable y∗i is said to be the
shadow price of the ith right-hand-side value, i = 1, . . . , m, if increasing/decreasing
a unit in the ith right-hand-side value, and keeping the rest of the right-hand-side
values unchanged, does not violate the optimality of the tableau.

Therefore, the shadow price of a resource tells us the increase/decrease in
profit resulting from a unit increase/decrease in the availability of the resource. In
other words, shadow prices enable us to make economic interpretations such as:
how to increase/decrease future profits by increasing/decreasing the availability
of the resources.

Example. Consider the example on page 104. Let us check whether the op-
timal dual variables y∗

1
= 1 and y∗

2
= 1 are shadow prices of resources b1 and

b2.
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• Suppose we change b1 = 5 to b1 +Δb1 = 6, that is, Δb1 = 1,

∧

xB= B−1(b+Δb) =





2

5
−1

5

1

5

2

5









6

4



 =





8

5

14

5





The optimality of the tableau is not violated, since the basic solution cor-
responding to the new right-hand-side vector remains feasible,

∧

xB≥ 0.
Hence, we can state that y∗

1
is the shadow price of resource b1. The new

optimal objective value increases as follows:

∧

z
∗

= z∗ + y∗
1
= 9 + 1 = 10.

• Suppose we change b2 = 4 to b2 +Δb2 = 3, that is, Δb2 = −1.

∧

xB= B−1(b+Δb) =





2

5
−1

5

1

5

2

5









5

3



 =





7

5

11

5





The optimality of the tableau is not violated, since there is primal feasibility
in the tableau,

∧

xB≥ 0. Hence, we can state that y∗
2
is the shadow price of

resource b2. The new optimal objective value decreases as follows:

∧

z
∗

= z∗ − y∗
2
= 9− 1 = 8.

In this case, the objective value decreases, since the unit change applied to
the resource was negative.

�

Example. Consider the example on page 105. The optimal solution to the
dual problem is:

y∗
1
= 0 , y∗

2
=

3

5
, y∗

3
=

1

5
.

Let us analyze the effect of a unit increase in the first right-hand-side value of
the model in the example, that is, we change b1 = 12 to b1 +Δb1 = 13.

∧

xB= B−1(b+Δb) =











1 −2

5
−9

5

0 2

5
−1

5

0 −1

5

3

5





















13

6

4











=











17

5

8

5

6

5











≥ 0.
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Since there is primal feasibility in the tableau,
∧

xB≥ 0, the optimality of the
tableau is not violated. Hence, we can state that y∗

1
is the shadow price of the

first right-hand-side value. However, the optimal objective value does not vary
because the shadow price is y∗

1
= 0.

∧

z
∗

= z∗ + y∗
1
=

22

5
+ 0 =

22

5
.

The fact that the first constraint of the model has a shadow-price of zero means
that increasing the available amount of the resource will not increase the profit,
which is logical because we are not currently using all of the resource. We can
easily verify it by substituting the optimal solution in the first constraint. Remem-
ber that x∗

1
= 6

5
, x∗

2
= 8

5
and that the first constraint is 4x1 + 3x2 ≤ 12.

4×
6

5
+ 3×

8

5
< 12.

Thus, no improvement is achieved from increasing the amount of the first
resource. Instead, we should analyze the convenience of reducing the amount of
it. �

3.5.2 The economic cost of the primal variables and the inter-
pretation of the simplex method

The interpretation of the dual problem also provides an economic interpretation of
what the simplex method does in the primal problem. In this subsection, we define
the economic cost of the primal variables and give an economic interpretation of
the simplex method. To better understand it, we consider the following problem.

A firm produces four different types of products: 1, 2, 3 and 4. Three resources
are used in the production process: A, B and C. The amount of each resource
used in the production of each product unit, the availability of the resources and
the profit obtained from each product unit are given in the following table:
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Products Resource

Resource 1 2 3 4 available

A 2 3 3

2
4 300

B 2 4 3 1 500

C 5 1 2 2 250

Profit 4 3 6 2

Let xj be the number of units of product j produced, j = 1, 2, 3, 4. We for-
mulate the following linear model to represent the production problem described.

max z = 4x1 + 3x2 + 6x3 + 2x4

subject to

2x1 + 3x2 +
3

2
x3 + 4x4 ≤ 300

2x1 + 4x2 + 3x3 + x4 ≤ 500

5x1 + x2 + 2x3 + 2x4 ≤ 250

x1, x2, x3, x4 ≥ 0

Let us suppose now that another enterprise wants to purchase all of the firm’s
resources, b1 = 300, b2 = 500 and b3 = 250. This enterprise has to determine
the price to pay for a unit of each of them. Consequently, decision-variables y1,
y2 and y3 are defined as: the price to pay for a unit of each of the resources A, B
and C, respectively. The objective of the enterprise is to minimize the total cost
of purchasing all of them.

min G = 300y1 + 500y2 + 250y3

Resource prices must be set high enough to encourage the firm to sell its re-
sources to the other enterprise. Otherwise, the firm would have no reason to sell
them, and would prefer to use them to produce the products and obtain the cor-
responding benefits. In other words, to produce a unit of product 1, the firm
consumes 2 units of resource A, 2 units of resource B, and 5 units of resource C.
If those units of resource are sold to the second enterprise, the firm will receive
2y1 + 2y2 + 5y3 monetary units; that is, the so called economic cost of produc-
tion of product 1. Since the firm obtains a profit of 4 from each unit of product
1 produced, the enterprise will have to pay at least 4 units for the combination
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of resources required to produce a unit of product 1. Therefore, the enterprise
must choose the values of y1, y2 and y3 to satisfy the following constraint (the first
constraint of the dual problem):

2y1 + 2y2 + 5y3 ≥ 4

Similar reasoning is followed for the other three products, and that is how we
obtain the following dual model:

min G = 300y1 + 500y2 + 250y3

subject to
2y1 + 2y2 + 5y3 ≥ 4

3y1 + 4y2 + y3 ≥ 3
3

2
y1 + 3y2 + 2y3 ≥ 6

4y1 + y2 + 2y3 ≥ 2

y1, y2, y3 ≥ 0

In summary, when the primal model is in maximization symmetric form, the
variables of the dual are related to the value of the resources available. For this
reason, the dual variables are often referred to as shadow prices.

It is also interesting to note that the previous discussion shows very clearly
that the ith dual variable does indeed correspond to the ith primal constraint.

Let us now use the concept of the economic cost of the primal variables in or-
der to give an economic interpretation of the simplex method. A nonbasic variable
xj of the primal model can be chosen to enter the basis in a subsequent iteration of
the simplex algorithm, if its reduced cost coefficient zj − cj is negative. The rea-
son for this condition is that zj − cj is precisely the jth dual constraint; when the
reduced cost coefficient zj − cj is negative, the economic cost of the production of
j is lower than the profit associated with its production, and thus, the production
of j becomes profitable. This reasoning can be verified in the following:

zj − cj = cTBB
−1aj − cj = yTaj − cj =

m
�

i=1

aijyi − cj .

Therefore, if zj − cj < 0 holds,

m
�

i=1

aijyi < cj,
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which means that, the economic cost of producing j is lower than the profit cj
associated with its production.

To conclude this section, we can say that the simplex method examines all
the nonbasic variables in the current basic feasible solution to see which one can
provide a more profitable use of the resources. If none of them can, the current
solution is optimal.

3.6 The dual simplex method
In Chapter 2 we saw that the identity matrix is selected as the initial basis to
compute a basic feasible solution to the primal problem using the simplex algo-
rithm, and that if necessary, artificial variables will be introduced to the model. In
subsequent iterations, the algorithm moves from a basic feasible solution to an im-
proved basic feasible solution of the primal problem, until optimality is reached,
that is, until zj−cj ≥ 0 holds in the tableau, for all j. Such optimality condition is
related to the feasibility of the dual problem. In fact, we can say that the simplex
algorithm starts at a primal feasible solution, and stops when dual feasibility is
reached. From this point onward, this method will be called the simplex primal
method.

In this section we describe the dual simplex algorithm. This algorithm also
starts selecting the identity matrix I as the initial basis, which in this case is al-
ways formed by slack variables. The first step is to write the model in maximiza-
tion symmetric form and to add a slack variable to each constraint. If the initial
tableau is dual feasible, then iterations of the algorithm will be performed until the
primal feasibility, keeping dual feasibility, is reached (if the problem is feasible).
If the initial tableau constructed for the first canonical basis is not dual feasible,
then an artificial constraint will be added to the primal problem to obtain the dual
feasibility, as we will see in Section 3.7.

3.6.1 The dual simplex algorithm
The objective is to maximize. Find an initial basis B = I of slack variables.

Step 1. Construct the initial tableau, where zj − cj ≥ 0 for all j.

Step 2. With regard to primal feasibility, there are two cases to consider.

• If xBi ≥ 0, i = 1, . . . ,m, the current solution is optimal. Stop.
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• If there exists xBi < 0, then the dual solution may be improved. Go to
Step 3.

Step 3. Basis modification.

• Select a vector to leave the basis, according to the following criteria:

xBr = min
i

{ xBi / xBi < 0 }

The rth row is the pivot row.
• Select a vector to enter the basis, according to the following criteria:

zk − ck
yrk

= max
j

�

zj − cj
yrj

/ yrj < 0

�

The kth column is the pivot column. yrk is the pivot element.

If yrj ≥ 0 for all j , the problem is infeasible. Stop.

Step 4. Compute the new tableau by pivoting in the same way as stated in
the simplex algorithm. Go to Step 2.

Example. Consider the following linear problem:

min z = 3x1 + 2x2

subject to
x1 + 2x2 ≥ 3

−2x1 + x2 ≥ 2

x1 + 4x2 ≥ 7

x1, x2 ≥ 0

We put the problem in maximization symmetric form before applying the dual
simplex algorithm.

max (−z) = −3x1 − 2x2

subject to
−x1 − 2x2 ≤ −3

2x1 − x2 ≤ −2

−x1 − 4x2 ≤ −7

x1, x2 ≥ 0
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We introduce three slack variables to put the three constraints in equation form.
The three slack variables provide the initial canonical basis.

max (−z) = −3x1 − 2x2 + 0x3 + 0x4 + 0x5

subject to
−x1 − 2x2 + x3 = −3

2x1 − x2 + x4 = −2

−x1 − 4x2 + x5 = −7

x1, x2, x3, x4, x5 ≥ 0

• Step 1. Construct the initial tableau. All zj−cj are nonnegative; the tableau
is dual feasible.

x1 x2 x3 x4 x5

3 2 0 0 0 0 −1

2

a3 −1 −2 1 0 0 −3 1

2

a4 2 −1 0 1 0 −2 1

4

a5 −1 −4 0 0 1 −7

• Step 2. The tableau is not primal feasible. Then, the dual solution may be
improved.

xB =











−3

−2

−7











�≥ 0

• Step 3. Basis modification.

xB3 = min{−3,−2,−7} = −7

Vector a5 leaves the basis. The 3rd row is the pivot-row.

zk − ck
yik

= max

�

3

−1
,
2

−4

�

= −
1

2
=

z2 − c2
y22

Vector a2 enters the basis. The 2nd column is the pivot-column.

The pivot element is −4.

OpenCourseWare, UPV/EHU



3.7. The artificial constraint technique 117

• Step 4. Compute the new tableau. The first row multiplier is 1

2
, the second

row multiplier is 1

4
and the multiplier for row zero is −1

2
.

After the pivoting operations are used, we get the tableau shown below:

x1 x2 x3 x4 x5

5

2
0 0 0 1

2
−7

2
−2

0 a3 −1

2
0 1 0 −1

2

1

2
2

0 a4
9

4
0 0 1 −1

4
−1

4

−2 a2
1

4
1 0 0 −1

4

7

4
1

We go to Step 2 and see that the tableau is not primal feasible. Therefore, we
need to proceed with another iteration of the dual simplex algorithm. Vector a4

leaves the basis and a5 enters it. We get this tableau:

x1 x2 x3 x4 x5

7 0 0 2 0 −4

0 a3 −4 0 1 −2 0 1

0 a5 −9 0 0 −4 1 1

−2 a2 −2 1 0 −1 0 2

Back at Step 2, we now verify that the tableau is primal feasible, and thus, it
is optimal. The optimal solution to the problem is x∗

1
= 0 and x∗

2
= 2, and the

optimal objective value is z∗ = 4. �

3.7 The artificial constraint technique
The dual simplex algorithm requires a dual feasible solution in the initial tableau.
However, for some linear problems such initial tableau is not readily obtainable.
The artificial constraint technique is used to extend the application of the dual
simplex algorithm to solve all linear models.

When the initial tableau is not dual feasible, the technique consists in adding
an artificial constraint to the model that is being solved. The introduction of such
artificial constraint should not modify the feasible region of the problem. The
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aim of introducing it is to obtain the dual feasibility in the tableau. Then, the
dual simplex algorithm can be carried out on the modified problem. The artificial
constraint added to the model is:

�

j∈N

xj ≤ M.

where N is the set of variables such that the reduced cost coefficients zj − cj
are negative in the initial tableau. To guarantee that the original feasible region of
the problem is not modified by the introduction of the artificial constraint to the
model,M must be positive and sufficiently large.

Example. Consider the following linear model:

max z = x1 + 6x2

subject to
x1 + 2x2 ≤ 20

x1 +
1

2
x2 ≥

1

2
x1, x2 ≥ 0

We transform it into the maximization symmetric form, and add a slack vari-
able to each of the constraints.

max z = x1 + 6x2 + 0x3 + 0x4

subject to
x1 + 2x2 + x3 = 20

−x1 −
1

2
x2 + x4 = −

1

2
x1, x2, x3, x4 ≥ 0

The initial canonical basis is B = I = (a3, a4). We form the following initial
tableau:

x1 x2 x3 x4

−1 −6 0 0 0

a3 1 2 1 0 20

a4 −1 −1

2
0 1 −1

2
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Since the initial tableau is not dual feasible, an artificial constraint must be
introduced before applying the dual simplex algorithm. We add the following
artificial constraint to the model:

x1 + x2 ≤ M.

We add a slack variable to the artificial constraint, which leads to the following
model:

max z = x1 + 6x2 + 0x3 + 0x4 + 0x5

subject to
x1 + 2x2 + x3 = 20

−x1 −
1

2
x2 + x4 = −

1

2
x1 + x2 + x5 = M

x1, x2, x3, x4, x5 ≥ 0

B = I = (a3, a4, a5) is now the initial canonical basis, and we form the
initial tableau corresponding to the model with the artificial constraint.

x1 x2 x3 x4 x5

−1 −6 0 0 0 0 −6

0 a3 1 2 1 0 0 20 2

0 a4 −1 −1

2
0 1 0 −1

2
−1

2

0 a5 1 1 0 0 1 M

Later on, we will see how to select the entering and the leaving vectors in such
initial tableau to ensure dual feasibility in the subsequent tableau. �

3.7.1 The effect of the artificial constraint
We can briefly say that, the artificial constraint technique extends the use of the
dual simplex algorithm when necessary. Nevertheless, the introduction of the
artificial constraint to the model should never modify the feasible region of the
original model; to ensure this, M must be positive and as large as necessary.

The figure below illustrates the introduction of an artificial constraint with a
large enoughM , such that it causes no effect on the feasible region, that is to say,
the shaded polygon in the figure.
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x1

x2

x1 + x2 = M
opt

(x∗

1
, x∗

2
)

However, ifM is not large enough, some points in the feasible region are dis-
carded, because the artificial constraint eliminates them. Look at the illustration
below to see that the feasible solutions in the shaded polygon not included in the
area marked with parallel lines are not in the feasible region of the model with the
artificial constraint x1 + x2 ≤ M .

x1

x2

x1 + x2 = M

(x∗

1
, x∗

2
)

opt

Note also that, when the feasible region of the problem is unbounded, the ar-
tificial constraint bounds it, even if M is large. In this last case, the artificial con-
straint limits the primal solution; the primal optimal solution verifies the equality
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of the artificial constraint. An illustration of this case is shown below, where it can
be seen that the primal optimal solution lies on the straight line that represents the
artificial constraint equality.

x1

x2

x1 + x2 = M

opt

As a conclusion to the two preceding cases, we can say that, when the slack
variable of the artificial constraint is nonbasic in the optimal solution, we can con-
clude that either the value ofM is not large enough, or the problem is unbounded.

3.7.2 The dual simplex algorithm with artificial constraint

The objective is to maximize. Find an initial basis B = I of slack variables.

Step 1. Construct the initial tableau.

Step 2. With regard to the dual feasibility, there are two cases to consider.

• If zj − cj ≥ 0 holds for all j, then go to Step 3.

• If there exists at least a column such that zj − cj < 0, then add an
artificial constraint to the model and construct the initial tableau for
the model with the additional constraint. Select a vector to enter the
basis according to the following criteria:

zk − ck = min
j

{ zj − cj / zj − cj < 0 }.
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Column k is the pivot column. Select the slack vector of the artificial
constraint to leave the basis; the corresponding row is the pivot row.
Compute the new tableau by pivoting in the same way as stated in the
simplex algorithm. The new tableau is dual feasible. Go to Step 3.

Step 3. Primal feasibility.

• If the model has no additional artificial constraint,

– If xBi ≥ 0 for all i, then the solution is optimal. Stop.
– If there exists at least a row i such that xBi < 0, then the solution
may be improved. Go to Step 4.

• If the model has an additional artificial constraint,

– If xBi ≥ 0 for all i, and the slack variable of the artificial con-
straint is basic and positive, then the solution is optimal. Stop.

– If xBi ≥ 0 for all i, and the slack variable of the artificial con-
straint is nonbasic, or it is basic and has value zero, then the prob-
lem is unbounded. Stop.

– If there exists at least a row i such that xBi < 0, then the solution
may be improved. Go to Step 4.

Step 4. Basis modification.

• Select a vector to leave the basis, according to the following criteria:

xBr = min
i

{ xBi / xBi < 0 }.

The rth row is the pivot row.

• Select a vector to enter the basis, according to the following criteria:

zk − ck
yrk

= max
j

{
zj − cj
yrj

/ yrj < 0 }.

The kth column is the pivot column. yrk is the pivot element. Go to
Step 5.
If yrj ≥ 0 for all j in the pivot row, the problem is infeasible. Stop.

Step 5. Compute the new tableau by pivoting in the same way as stated in
the simplex algorithm. Go to Step 3.

OpenCourseWare, UPV/EHU



3.8. Some illustrative examples 123

3.8 Some illustrative examples
In this section, we solve three linear models which can only be solved by the
dual simplex algorithm after the artificial constraint technique has been applied.
We interpret the tableau for a feasible problem, an infeasible problem and an
unbounded problem.

Example. (A feasible problem.) Let us consider the example of page 118.
As we have previously seen, the initial tableau for the canonical basis constituted
by slack variables is not dual feasible. Therefore, we need to add the artificial
constraint x1 + x2 ≤ M to obtain the dual feasibility, before applying the dual
simplex algorithm.

The initial tableau is displayed below (see page 118).

x1 x2 x3 x4 x5

−1 −6 0 0 0 0

0 a3 1 2 1 0 0 20 2

0 a4 −1 −1

2
0 1 0 −1

2
−1

2

0 a5 1 1 0 0 1 M

We select vector a2 to enter the basis because z2 − c2 is the minimum reduced
cost coefficient between the two negative zj − cj . We select the slack vector of the
artificial constraint, a5, to leave the basis. After pivoting operations are used, we
get the following tableau:

x1 x2 x3 x4 x5

5 0 0 0 6 6M

0 a3 −1 0 1 0 −2 −2M + 20

0 a4 −1

2
0 0 1 1

2

1

2
M − 1

2

6 a2 1 1 0 0 1 M

It can be verified that the tableau is dual feasible, and as a consequence, the
dual simplex algorithm can now be carried out normally. Vector a3 is selected to
leave the basis and vector a5 to enter it. After pivoting, we get:
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x1 x2 x3 x4 x5

2 0 3 0 0 60

0 a5
1

2
0 −1

2
0 1 M − 10

0 a4 −3

4
0 1

4
1 0 9

2

6 a2
1

2
1 1

2
0 0 10

Since xB ≥ 0 and the slack variable of the artificial constraint is basic and posi-
tive, x∗

5
= M−10, the solution is optimal for the original linear model (the model

without the additional artificial constraint). The optimal solution is x∗

1
= 0 and

x∗

2
= 10, and the optimal objective value is z∗ = 60. �

Example. (An unbounded problem.) Consider the following linear model:

max z = −4x1 + 5x2

subject to
2x1 + 2x2 ≥ 4

x1 − x2 ≥ 3

x1, x2 ≥ 0

We transform it into the maximization symmetric form and add the needed
slack variables and the artificial constraint x2 ≤ M , which leads to:

max z = −4x1 + 5x2 + 0x3 + 0x4 + 0x5

subject to
−2x1 − 2x2 + x3 = −4

−x1 + x2 + x4 = −3

x2 + x5 = M

x1, x2, x3, x4, x5 ≥ 0

Applying the dual simplex algorithm, we obtain the following series of tableaux:
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x1 x2 x3 x4 x5

4 −5 0 0 0 0

0 a3 −2 −2 1 0 0 −4 −2

0 a4 −1 1 0 1 0 −3 1

0 a5 0 1 0 0 1 M

4 0 0 0 5 5M

0 a3 −2 0 1 0 2 2M − 4 2

0 a4 -1 0 0 1 −1 −M − 3

5 a2 0 1 0 0 1 M 0

0 0 0 4 1 M − 12

0 a3 0 0 1 −2 4 4M + 2

−4 a1 1 0 0 −1 1 M + 3

5 a2 0 1 0 0 1 M

The last tableau is optimal, because it is primal feasible, xB ≥ 0, and dual
feasible, zj−cj ≥ 0 for all j. However, the slack vector of the artificial constraint,
a5, is not basic. This leads to conclude that the problem is unbounded. �

Example. (An infeasible problem.) Consider the following linear model:

max z = 2x1 + x2

subject to
x1 + x2 ≤ 2

−3x1 + x2 ≥ 3

x1, x2 ≥ 0

We transform it into the maximization symmetric form and add the needed
slack variables and the artificial constraint x1 + x2 ≤ M , which leads to:
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max z = 2x1 + x2 + 0x3 + 0x4 + 0x5

subject to

x1 + x2 +x3 = 2

3x1 − x2 +x4 = −3

x1 + x2 +x5 = M

x1, x2, x3, x4, x5 ≥ 0

Below are displayed the tableaux obtained after several iterations of the dual
simplex algorithm.

x1 x2 x3 x4 x5

−2 −1 0 0 0 0

0 a3 1 1 1 0 0 2 1

0 a4 3 −1 0 1 0 −3 3

0 a5 1 1 0 0 1 M

0 1 0 0 2 2M

0 a3 0 0 1 0 −1 −M + 2 0

0 a4 0 −4 0 1 −3 −3M − 3

2 a1 1 1 0 0 1 M −1

4

0 0 0 1

4

5

4

5

4
M − 3

4

0 a3 0 0 1 0 −1 −M + 2

1 a2 0 1 0 −1

4

3

4

3

4
M + 3

4
−3

4

2 a1 1 0 0 1

4

1

4

1

4
M − 3

4
−1

4
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x1 x2 x3 x4 x5

0 0 5

4

1

4
0 7

4

0 a5 0 0 −1 0 1 M − 2

1 a2 0 1 3

4
−1

4
0 9

4

2 a1 1 0 1

4

1

4
0 −1

4

Since xB3 < 0, the third row is the pivot row, and vector a1 is selected to leave
the tableau. Nevertheless, y3j ≥ 0 for all columns in the pivot row, which means
that, according to the dual simplex algorithm, there is no pivot element. This leads
to the conclusion that the problem is infeasible because it has not been possible to
find a feasible solution xB ≥ 0 in the tableau. �
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