
Chapter 2

The simplex method

The graphical solution can be used to solve linear models defined by using only
two or three variables. In Chapter 1 the graphical solution of two variable linear
models has been analyzed. It is not possible to solve linear models of more than
three variables by using the graphical solution, and therefore, it is necessary to
use an algebraic procedure. In 1949, George B. Dantzig developed the simplex
method for solving linear programming problems.

The simplex method is designed to be applied only after the linear model is
expressed in the following form:

Standard form. A linear model is said to be in standard form if all constraints
are equalities, and each one of the values in vector b and all variables in the model
are nonnegative.

max(min)z = cTx

subject to
Ax = b

x ≥ 0

If the objective is to maximize, then it is said that the model is in maximization
standard form. Otherwise, the model is said to be in minimization standard form.

2.1 Model manipulation
Linear models need to be written in standard form to be solved by using the sim-
plex method. By simple manipulations, any linear model can be transformed into
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20 Chapter 2. The simplex method

an equivalent one written in standard form. The objective function, the constraints
and the variables can be transformed as needed.

1. The objective function.

Computing the minimum value of function z is equivalent to computing the
maximum value of function −z,

min z =

n
�

j=1

cjxj ⇐⇒ max (−z) =

n
�

j=1

−cjxj

For instance, min z = 3x1 − 5x2 and max (−z) = −3x1 + 5x2 are
equivalent; values of variables x1 and x2 that make the value of z minimum
and −z maximum are the same. It holds min z = −max (−z).

2. Constraints.

(a) The ith constraint of a linear model can be multiplied by −1, like this:

n
�

j=1

aijxj ≥ bi ⇐⇒

n
�

j=1

−aijxj ≤ −bi

For instance, if we multiply the inequality constraint 2x1 + 3x2 ≤ −2
by−1, we obtain the equivalent−2x1−3x2 ≥ 2 inequality constraint.

(b) Inequality constraints can be converted to equality constraints.

n
�

j=1

aijxj ≤ bi ⇐⇒

n
�

j=1

aijxj + y = bi

n
�

j=1

aijxj ≥ bi ⇐⇒
n

�

j=1

aijxj − y = bi

Variable y used in the previous transformations is called slack vari-
able; in both cases, it is assumed that y ≥ 0.
For example, constraints x1 − 4x2 ≤ 4 and x1 − 4x2 + y = 4 are
equivalent, if y ≥ 0 holds.
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2.1. Model manipulation 21

(c) An equality constraint can be transformed into two inequality con-
straints, by proceeding like this:

n
�

j=1

aijxj = bi ⇐⇒

n
�

j=1

aijxj ≤ bi and
n

�

j=1

aijxj ≥ bi

For example, the equality constraint −2x1 + x2 = 2 is equivalent to
having both the following two inequality constraints: −2x1 + x2 ≤ 2
and −2x1 + x2 ≥ 2.

3. Variables.
Variables need to be nonnegative. These are the transformations that can be
used in case they are not.

• If a variable xj is defined to be negative, xj ≤ 0, then the substitution
xj = −x�

j produces a nonnegative variable x
�

j .

• If a variable xj is unrestricted in sign, then it can be replaced by xj =
x�

j − x��

j , where x
�

j ≥ 0 and x��

j ≥ 0.

– If x�

j > x��

j , then xj > 0 holds.
– If x�

j < x��

j , then xj < 0 holds.
– If x�

j = x��

j , then xj = 0 holds.

Example. Taking into account the equivalences presented previously, let us
transform the following linear model into the maximization standard form:

min z = x1 + 2x2 + x3

subject to
x1 + x2 − x3 ≥ 2

x1 − 2x2 + 5x3 ≤ −1

x1 + x2 + x3 = 4

x1 ≥ 0 , x2 ≤ 0, x3 : unrestricted

• Objective function.

We transform the objective function into a maximization function:

max (−z) = −x1 − 2x2 − x3
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22 Chapter 2. The simplex method

• Constraints.

The first inequality constraint can be written as an equality constraint by
subtracting the nonnegative slack variable x4,

x1 + x2 − x3 − x4 = 2.

We add the slack variable x5 to the second constraint,

x1 − 2x2 + 5x3 + x5 = −1.

Wemultiply by−1 the constraint, so that the right-hand-side value becomes
positive,

−x1 + 2x2 − 5x3 − x5 = 1.

The third constraint is appropriately written:

x1 + x2 + x3 = 4.

• Variables.

Variable x1 is defined nonnegative. Variable x2 is not defined nonnegative,
x2 ≤ 0 , thus we define variable x�

2 as x
�

2 = −x2, and change the sign of
coefficients of variable x2 in the model when we replace it by x�

2. Variable
x3 is unrestricted in sign. Therefore, we define x3 = x�

3 − x��

3 and replace it
in the model.

The resulting linear model is in maximization standard form and may be written
as:

max (−z) = −x1 + 2x�

2 − x�

3 + x��

3 + 0x4 + 0x5

subject to
x1 − x�

2 − x�

3 + x��

3 − x4 = 2

−x1 − 2x�

2 − 5x�

3 + 5x��

3 − x5 = 1

x1 − x�

2 + x�

3 − x��

3 = 4

x1, x
�

2, x
�

3, x
��

3, x4, x5 ≥ 0

�

The addition or subtraction of slack variables should not change the objective
function. Thus, their coefficient in the objective function is zero.
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2.2. Solving linear models 23

2.2 Solving linear models
As we have seen in the previous section, linear models can always be written in
standard form. The simplex algorithm that we study in this chapter is design to
maximize; therefore, the maximization standard form is used onwards. Remember
that in the standard form, vector b is defined as nonnegative.

Consider the following linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

where x and c are n × 1 vectors, b is an m × 1 vector and A is an m × n
matrix.

Suppose that m < n, and that the rank of matrix A is m. Systems of this
kind have an infinite number of solutions. The problem consists in computing the
solution that optimizes the objective function.

Next, we give some definitions needed to develop the simplex method.

1. Definition. If vector x satisfies a system of linear equations Ax = b, then
it is said to be a solution to the system.

2. Definition. A solution vector x, is said to be feasible if x ≥ 0.

3. Definition. Let B be a basic matrix constituted by extracting m columns
out of matrix A. xB is called a basic solution if BxB = b is hold. The
components of xB are called basic variables. In a basic solution, all nonba-
sic variables are zero, xN = 0 (see Appendix A). Thus, a basic solution has
a maximum ofm components different from zero.

Moreover, if all components of vector xB are nonnegative, xB ≥ 0,then it
is called a basic feasible solution.

4. Definition. A basic feasible solution is said to be degenerate if at least one
component of xB is zero. If xB > 0, then it is called nondegenerate.

5. Definition. The set of all feasible solutions of a linear problem is called the
feasible region or the convex set of feasible solutions, and it is noted by F .
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24 Chapter 2. The simplex method

6. Definition. Notation x∗ is used to denote the optimal solution of a linear
model, and z∗ = cTx∗ to denote the optimal objective value.

7. Definition. A linear model is said to be unbounded if there exists no finite
optimal value for the objective function, that is, if z∗ → +∞ or z∗ → −∞.

8. Definition. If a linear model has more than one optimal solution then it is
said that the model has multiple optimal solutions.

From now on, each time we mention the basis, we will be referring to the basic
matrix.

Example. Consider the following linear model in standard form.

max z = 3x1 + 6x2 + 5x3 + 4x4 + x5

subject to
2x1 + 8x2 + 3x3 + x4 + x5 = 6

x1 + x2 + 2x3 + x4 = 4

x1, x2, x3, x4, x5 ≥ 0

where
cT = (3, 6, 5, 4, 1), xT = (x1, x2, x3, x4, x5)

A =





2 8 3 1 1

1 1 2 1 0



 , b =





6

4





The rank of matrixA is 2, lower than the number of variables in the system of
equations. Therefore, the system of equations has an infinite number of solutions.
However, the number of basic solutions is finite. Remember that to compute all
the basic solutions, we have to choose all the possible basesB among the columns
of matrixA (see Appendix A), and solve the following system:

xB = B−1b,

where xB is the vector of basic variables. Next, we compute three basic solu-
tions.

1. Matrix B, constituted by the first and the fourth columns of matrix A, is a
basis.

B =





2 1

1 1




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2.2. Solving linear models 25

Therefore,

xB =





x1

x4



 , N =





8 3 1

1 2 0



 and xN =











x2

x3

x5











Hence,

xB =





2 1

1 1





−1 



6

4



−





2 1

1 1





−1 



8 3 1

1 2 0















x2

x3

x5











(2.1)

By assigning different values to nonbasic variables x2, x3 and x5, the infinite
solutions of the system may be computed. Next, we compute two of them.

• If we assign x2 = 0, x3 = 0 and x5 = 0 in equation (2.1), operations
yield the following basic solution:

xB =





1 −1

−1 2









6

4



 =





2

2





The basic solution obtained (x1 = 2, x4 = 2) is feasible, because there
is no negative component.

• If we assign x2 = 0, x3 = 1 and x5 = 0 in equation (2.1), operations
yield the following solution:





x1

x4



 =





2

2



−





7 1 1

−6 1 −1















0

1

0











=





1

1





Vector xT = (1, 0, 1, 1, 0) is a solution to the system of equations. It is
feasible, because all components are nonnegative. However, it is not a basic
solution because the nonbasic variable x3 has a value different from zero.
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26 Chapter 2. The simplex method

2. If we choose matrix B, constituted by the first two columns of matrixA,

B =





2 8

1 1





which is a basis, and if we set all nonbasic variables to zero, then we get the
following basic solution:

xB =





2 8

1 1





−1 



6

4



 =





−1

6

4

3

1

6
−1

3









6

4



 =





13

3

−1

3





The basic solution computed is not feasible, because variable x2 = −1

3
is

negative.

3. If we choose the matrix constituted by the third and the fifth columns ofA,

B =





3 1

2 0





which is a basis, and if we set all nonbasic variables to zero, then we get the
following basic solution:

xB =





3 1

2 0





−1 



6

4



 =





0 1

2

1 −3

2









6

4



 =





2

0





The basic solution computed is feasible. In addition, it is degenerate be-
cause there exists a basic variable that has a value of zero in the solution:
x5 = 0.

�

2.3 Extreme points and basic feasible solutions
As we have seen in the graphical solution of linear models, the optimal solution
can be found in an extreme point of the convex set of feasible solutions. If the
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2.3. Extreme points and basic feasible solutions 27

problem has multiple optimal solutions, at least one of them is an extreme point
of the set. It is not possible to solve linear models with more than three variables
by using the graphical solution, and therefore, an algebraic method is needed. In
the following two theorems, we demonstrate some results that will allow us to go
from the geometric solution method to the algebraic method. In the proves, the
following results are used:

1. The set F of feasible solutions of a linear model written in standard form is
a closed convex set.

2. A point x in the convex set F is an extreme point if there do not exist two
points x1 and x2 in F , x1 �= x2, such that x = λx1 + (1 − λ)x2, for some
0 < λ < 1.

3. Every point x in a closed and bounded convex set can be expressed by a
convex linear combination of the extreme points, as follows:

x =

q
�

i=1

λixi , 0 ≤ λi ≤ 1 ,

q
�

i=1

λi = 1

Every extreme point corresponds to a basic feasible solution, and conversely,
every basic feasible solution corresponds to an extreme point, as it is proved in
the following theorem:

Theorem 2.3.1 Consider the following linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

x is a basic feasible solution if and only if x is an extreme point of F .

Proof.
⇒ If x is a basic feasible solution, then let us prove that it is an extreme

point.
If x is a basic feasible solution, then it has at most m components greater

than zero. In order to simplify the notation, we assume that they are the first m
components. Then,
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28 Chapter 2. The simplex method

x =





xB

0





Le us assume that there are two points x1,x2 in F , x1 �= x2, such that,

x = λx1 + (1− λ)x2 , 0 < λ < 1.

Consider

x1 =





y1

y�

1



 and x2 =





y2

y�

2





where vectors yi, ( i = 1, 2) are m × 1, and vectors y�

i, ( i = 1, 2) are
(n−m)× 1. Then, from the equation:





xB

0



 = λ





y1

y�

1



+ (1− λ)





y2

y�

2





we can conclude:
0 = λy�

1 + (1− λ)y�

2.

y�

1,y
�

2 ≥ 0, λ > 0 and 1 − λ > 0. Therefore, y�

1 = y�

2 = 0 holds. Thus,
solutions x, x1 and x2 are basic solutions, and, as they correspond to the same
basis, xB = x1 = x2 is satisfied.

As a result, the assumption made was wrong; there do not exist such points x1

and x2 in F , and consequently, x is an extreme point.

⇐ If x is an extreme point, then it is a basic feasible solution.
Assume that vector x has k components greater than zero, and the rest are

zero. Then, the system of constraints can be written as follows:

k
�

i=1

xiai = b.

To show that x is a basic feasible solution, it must be shown that vectors ai,
i = 1, . . . , k, are linearly independent. We do this by contradiction. Suppose ai,
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2.3. Extreme points and basic feasible solutions 29

i = 1, . . . , k, are linearly dependent. Then, there is a nontrivial linear combination
that is zero:

k
�

i=1

αiai = 0.

We define:
αT = (α1, . . . , αk, 0, . . . , 0).

It is possible to select � such that x1 = x + �α ≥ 0 and x2 = x − �α ≥ 0.
Moreover, x1 �= x2 holds. We then have:

x =
1

2
x1 +

1

2
x2.

This cannot occur, since x is an extreme point of F . Thus, ai, i = 1, . . . , k, are
linearly independent and x is a basic feasible solution. �

An optimal solution to a linear model is an extreme point of the feasible region,
as it is proved in the following theorem.

Theorem 2.3.2 Consider the following linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

The optimal value of the objective function is obtained at an extreme point of the
feasible region F .

Proof. Suppose we have an optimal solution x∗ which is not an extreme point,
and that z∗ = cTx∗ is the optimal objective value of the model. Consequently, for
every point x in the feasible region F , the following holds:

z = cTx ≤ cTx∗ = z∗

Let us consider the set of all the extreme points of F , {x1, . . . ,xk}. Every
point in the feasible region F , and therefore x∗ as well, can be expressed by a
convex linear combination of the extreme points as follows:

x∗ =
k

�

i=1

λixi , λi ≥ 0,
k

�

i=1

λi = 1
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Thus,

z∗ = cTx∗ = cT
k

�

i=1

λixi =

k
�

i=1

λic
Txi

Since max
i

(cTxi) ≥ cTxi, i = 1, . . . , k,

z∗ =
k

�

i=1

λic
Txi ≤

k
�

i=1

λi max
i

(cTxi) = max
i

(cTxi)
k

�

i=1

λi = max
i

(cTxi) ≤ z∗.

As a result, z∗ = max
i

(cTxi), and it can be concluded that the optimal objective
value is obtained in an extreme point. �

To illustrate the results proved in Theorem 2.3.1 and Theorem 2.3.2, we con-
sider an example. As linear models possess a finite number of basic solutions
at most, it is possible to develop an iterative procedure that, starting at a basic
feasible solution moves towards a better basic feasible solution, until an optimal
solution is reached.

Example. Consider the following linear model:

max z = x1 + 2x2

subject to
−x1 + 4x2 ≤ 4

x1 − x2 ≤ 3

x1, x2 ≥ 0

We can represent graphically the feasible region and compute the extreme points.
There are four extreme points in F . By moving the objective function line over
the feasible region in the optimization direction, we reach the extreme point B.

O = (0, 0) , A = (0, 1) , B =

�

16

3
,

7

3

�

, C = (3, 0)

OpenCourseWare, UPV/EHU



2.3. Extreme points and basic feasible solutions 31

x1

x2

−x1 + 4x2 = 4

x1 − x2 = 3

A

B

CO

max

To compute algebraically the basic solutions, and to see the correspondence
between the extreme points of the feasible region and the basic feasible solutions,
we must introduce the slack variables x3 and x4. This yields the following equiv-
alent linear model in standard form:

max z = x1 + 2x2 + 0x3 + 0x4

subject to

−x1 + 4x2 +x3 = 4

x1 − x2 +x4 = 3

x1, x2, x3, x4 ≥ 0

Matrix A in the system of linear equations has four columns. Therefore, we
can extract at most 6 bases B out of matrix A; combining the four columns and
grouping two by two the linearly independent, we have at most 6 bases. Let us
examine the 6 options mentioned.

1. Basis B = (a1 a2).

xB =





−1 4

1 −1





−1 



4

3



 =





1

3

4

3

1

3

1

3









4

3



 =





16

3

7

3




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This basic solution is feasible, and it corresponds to the extreme point B
shown in the graphical representation.

2. Basis B = (a1 a3).

xB =





−1 1

1 0





−1 



4

3



 =





0 1

1 1









4

3



 =





3

7





This basic solution is feasible, and it corresponds to the extreme point C
shown in the graphical representation.

3. Basis B = (a1 a4).

xB =





−1 0

1 1





−1 



4

3



 =





−1 0

1 1









4

3



 =





−4

7





This basic solution is not feasible, because there are negative components.
Thus, this basic solution does not correspond to any extreme point in the
graphical representation.

4. Basis B = (a2 a3).

xB =





4 1

−1 0





−1 



4

3



 =





0 −1

1 4









4

3



 =





−3

16





This basic solution is not feasible, because there are negative components.
Thus, this basic solution does not correspond to any extreme point in the
graphical representation.

5. Basis B = (a2 a4).

xB =





4 0

−1 1





−1 



4

3



 =





1

4
0

1

4
1









4

3



 =





1

4





This basic solution is feasible, and it corresponds to the extreme point A
shown in the graphical representation.
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6. Basis B = (a3 a4).

xB =





1 0

0 1





−1 



4

3



 =





1 0

0 1









4

3



 =





4

3





This basic solution is feasible, and it corresponds to the extreme point O
shown in the graphical representation.

�

All the sets of two vectors extracted out of A in the previous example are
bases, and we computed six basic solutions. If the vectors chosen happen to be
linearly dependent, then they do not constitute a basis, and therefore, it is not
possible to compute a basic solution from them. The fourth and the fifth basic
solutions computed do not correspond to any extreme point of the feasible region,
because they are not feasible.

2.4 The simplex method
As we have seen in the graphical solution of linear models, there are different
types of optimal solutions: unique optimal solution, multiple optimal solutions,
unbounded solution. In this section, we determine the conditions that must hold
to identify each one of them, and develop an iterative procedure to solve linear
models: the simplex algorithm.

2.4.1 Definitions and notation
To begin with, we will first see some basic definitions and establish the notation
used in the development of the linear programming theory. Consider a linear
model in standard form.

max z = cTx

subject to
Ax = b

x ≥ 0

Suppose that there are m linearly independent rows and n columns in matrix
A, n > m. LetB be anm×m basis formed withm linearly independent columns
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of A, and let N be the remaining columns of A. To simplify the notation, we
assume that the columns chosen to extract basis B are the first ones of matrix A.
The basic components of vectors c and x are denoted by cB and xB, respectively;
nonbasic components are denoted by cN and xN . The linear model can be written
as:

max z = (cTB | cTN)











xB

−

xN











subject to

(B | N)











xB

−

xN











= b

xB,xN ≥ 0

And we get:

max z = cTBxB + cTNxN

subject to
BxB +NxN = b

xB,xN ≥ 0

• Basic solution. By setting xN = 0, the system of linear equations isBxB =
b, and the basic solution is computed,

xB = B−1b,

where

xB =

















xB1

xB2

...

xBm
















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• Objective value. Let cTB = (cB1, cB2, . . . , cBm),

z = cTBxB = (cB1, cB2, . . . , cBm)

















xB1

xB2

...

xBm

















=
m
�

i=1

cBixBi.

• Coordinate vector. Let a1, a2, . . . , an be the column vectors of matrix A.
Each vector can be written as a linear combination of vectors in the basis
B. The notation used is the following:

aj = y1ja1 + y2ja2 + · · ·+ ymjam =

m
�

i=1

yijai.

The coordinate vector of aj is:

yj =

















y1j

y2j
...

ymj

















The coordinate vector is computed by solving the system aj = Byj , that is,

yj = B−1aj .

• Reduced cost coefficients zj − cj . The scalar value zj for each vector aj is
computed as follows:

zj = cTByj = cB1y1j + cB2y2j + · · ·+ cBmymj =
m
�

i=1

cBiyij .

Example. Consider the following linear model in standard form:

max z = 3x1 + 4x2 + 5x3 + 6x4

subject to
2x1 + x2 + x3 + 8x4 = 6

x1 + x2 + 2x3 + x4 = 4

x1, x2, x3, x4 ≥ 0
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Consider the basis constituted by the first two columns of matrixA. The linear
model can be written in matrix notation like this:

max z = (3, 4 | 5, 6)























x1

x2

−

x3

x4























subject to





2 1 1 8

1 1 2 1



























x1

x2

−

x3

x4























=





6

4





x1, x2, x3, x4 ≥ 0

• Basic solution.

xB = B−1b =





2 1

1 1





−1 



6

4



 =





2

2





• Objective value. Since cTB = (3, 4),

z = cTBxB = (3, 4)





2

2



 = 14

• The coordinate vector of a nonbasic vector. Let us compute it for vector a4.





8

1



 = y14





2

1



+ y24





1

1



 =





2 1

1 1









y14

y24




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By solving the system, we get:

y4 =





y14

y24



 =





2 1

1 1





−1 



8

1



 =





7

−6





• Reduced cost coefficient z4 − c4:

z4 − c4 = cTBy4 − c4 = (3, 4)





7

−6



− 6 = −3− 6 = −9.

�

2.4.2 Improvement of a basic feasible solution
When seeking an optimal solution for a linear model, it is only necessary to con-
sider the basic feasible solutions defined by the constraints, because the optimal
objective value is always achieved at a basic feasible solution. The following
theorem states the conditions for improvement when computing a basic feasible
solution from another basic feasible solution. Starting at a basic feasible solu-
tion, the simplex method will make use of these conditions to move from a basic
feasible solution to a better one, until the optimality condition holds.

Theorem 2.4.1 (Improvement of a basic feasible solution) Consider a linear model
in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

Let B be a basis formed by columns of A, and let xB = B−1b be the basic
feasible solution relative to B, and z = cTBxB the corresponding objective value.

If there exists a nonbasic vector aj in matrix A such that zj − cj < 0 and
for such vector aj there exists a positive coordinate yij , i = 1, . . . ,m, then there

exists another basic feasible solution
∧

xB , where

∧

z =
∧

c
T

B

∧

xB ≥ z = cTBxB.
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Proof. To simplify notation, we assume that basis B is formed by extracting
the first m columns out of matrix A, that is, B = (a1 . . . ar . . . am). Since xB

is a basic feasible solution, it satisfies:

xB1a1 + xB2a2 + · · ·+ xBmam = b =
m
�

i=1

xBiai. (2.2)

Addends with nonbasic variables have not been included in the equation.
Vectors am+1, am+2, . . . , an are not basic. Any of them can be expressed as a

linear combination of the basic vectors.

aj =
m
�

i=1

yijai , j = m+ 1, . . . , n (2.3)

Since aj �= 0, j = m+ 1, . . . , n, at least one coordinate yij is nonzero. Let us
assume it is the yrj �= 0. If we write separately the rth addend in equation (2.3),
we get:

aj =
m
�

i=1

i�=r

yijai + yrjar (2.4)

We can express vector ar as a linear combination of vectors a1, . . . , aj , . . . , am.
The new set of vectors obtained by replacing vector ar by aj constitutes a new
basis (see Theorem A.3.2 on page 248).

∧

B= (a1 . . . aj . . . am).

Let us now see how we can compute the new basic solution
∧

xB . If we solve
vector ar in equation (2.4), we obtain:

ar =
1

yrj
aj −

m
�

i=1

i�=r

yij
yrj

ai.

Writing separately the rth addend in equation (2.2), we get:

m
�

i=1

i�=r

xBiai + xBrar = b.
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Substituting vector ar, we have:

m
�

i=1

i�=r

xBiai + xBr[
1

yrj
aj −

m
�

i=1

i�=r

yij
yrj

ai] = b.

After rearranging the addends,

m
�

i=1

i�=r

(xBi − xBr

yij
yrj

)ai +
xBr

yrj
aj = b,

we obtain a new set of m values which satisfies the set of equations, and conse-
quently it constitutes the new basic solution.

∧

xB=











xBi − xBr

yij
yrj

xBr

yrj

i �= r

i = r
(2.5)

The question remaining is to find out under which conditions the new basic
solution

∧

xB will be feasible. Every component in
∧

xB must be greater than or
equal to zero for it to be feasible, that is,

• For the rth component,
∧

xBr=
xBr

yrj
≥ 0.

As yrj �= 0 and xBr ≥ 0, then the condition yrj > 0 must be satisfied to
maintain feasibility, that is,

xBr

yrj
≥ 0.

• For the remaining,
∧

xBi= xBi − xBr

yij
yrj

≥ 0, i = 1, . . . ,m, i �= r

As xBi ≥ 0, xBr ≥ 0 and yrj > 0, there are three cases to consider:

– If yij < 0, then
∧

xBi= xBi − xBr

yij
yrj

≥ 0 holds.

– If yij = 0, then
∧

xBi= xBi − xBr

yij
yrj

= xBi ≥ 0 holds.

– If yij > 0, then to maintain feasibility, that is,
∧

xBi≥ 0, the following
condition must be satisfied:
∧

xBi= xBi − xBr

yij
yrj

≥ 0 ⇐⇒
xBi

yij
−

xBr

yrj
≥ 0 ⇐⇒

xBi

yij
≥

xBr

yrj
.
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Taking into account all the foregoing conditions, vector ar which is replaced
by another in the basis, is determined by the following criteria:

xBr

yrj
= min

i
{
xBi

yij
/ yij > 0} (2.6)

Up to now, it has been proved that vector ar which satisfies criteria (2.6) can
be replaced in the basis to compute a new basic feasible solution. Let us now
determine under which conditions the new basic feasible solution

∧

xB is better
than the old one, xB, that is, under which conditions the following holds:

∧

z=
∧

c
T

B

∧

xB≥ cTBxB = z.

We compute
∧

z, and write separately the rth addend,

∧

z=

m
�

i=1

∧

cBi

∧

xBi=

m
�

i=1

i�=r

∧

cBi

∧

xBi +
∧

cBr

∧

xBr .

By substituting
∧

cBi,
∧

cBr,
∧

xBi and
∧

xBr, we get:

∧

z=

m
�

i=1

i�=r

cBi(xBi − xBr

yij
yrj

) + cj
xBr

yrj
= (∗)

When i = r, the following holds:

cBr(xBr − xBr

yrj
yrj

) = 0.

Therefore, we can ignore the condition i �= r in the summation, which leads to
the following expression:

(∗) =

m
�

i=1

cBi(xBi − xBr

yij
yrj

) + cj
xBr

yrj
.

By applying elementary straightforward operations,

∧

z=
m
�

i=1

cBixBi −
xBr

yrj

m
�

i=1

cBiyij + cj
xBr

yrj
= z −

xBr

yrj
(zj − cj)
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we obtain:
∧

z= z −
xBr

yrj
(zj − cj). (2.7)

Hence,

∧

z≥ z ⇐⇒ −
xBr

yrj
(zj − cj) ≥ 0 ⇐⇒

xBr

yrj
(zj − cj) ≤ 0.

As xBr ≥ 0 and yrj > 0 , to satisfy the relation
∧

z≥ z, it is clear that zj − cj < 0
must necessarily hold.

We conclude that for vector aj , the one that will substitute vector ar in the
original basis, zj − cj < 0 holds. Usually, vector ak whose reduced cost coef-
ficient is the minimum among all the negative ones is chosen to enter the basis.
Therefore, this is the rule followed to choose the entering vector ak:

zk − ck = min
j
{zj − cj / zj − cj < 0} (2.8)

�

2.4.3 Selection of entering and leaving vectors
According to the above theorem, we need to choose a basis and compute its corre-
sponding basic feasible solution and objective value; afterwards, the replacement
of a vector in the original basis by a nonbasic one results in a new basis. The
corresponding basic solution is feasible and better than the previous one if the
entering vector and the leaving one are selected using the criteria (2.6) and (2.8),
which can be summarized as follows:

• Entering vector rule. Vector ak is selected to enter the basis if the following
rule holds:

zk − ck = min
j
{zj − cj / zj − cj < 0}

The rule guarantees that the solution computed for the new basis will be
better than the previous one, that is,

∧

z≥ z.

• Leaving vector rule. Vector ak enters the basis and will replace vector ar.
The leaving vector ar is selected according to the following rule:

xBr

yrk
= min

i

�

xBi

yik
/ yik > 0

�
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The rule guarantees that the solution computed for the new basis will be
feasible, that is,

∧

xB≥ 0.

2.4.4 Rules to compute
∧
xB and

∧
z

From the proof of Theorem 2.4.1 and the rules for selecting the entering and leav-
ing vectors, the calculation of the new basic feasible solution

∧

xB shown in (2.5),
and the new objective value

∧

z shown in (2.7) can be written as follows:

• Calculation of the new basic feasible solution.

∧

xB=











xBi − xBr

yik
yrk

xBr

yrk

i �= r

i = r
(2.9)

• Calculation of the new objective value.

∧

z= z −
xBr

yrk
(zk − ck) (2.10)

Example. Let us consider the following linear problem:

max z = 4x1 + 5x2 + x3

subject to
x1 + x2 + x3 ≤ 8

−x1 − 2x2 + x3 ≤ −2

x1, x2, x3 ≥ 0

First, we need to transform the model into the maximization standard form.
Therefore, we introduce the slack variables x4 and x5 to transform inequality con-
straints into equalities. Moreover, we multiply the second constraint by−1 so that
b ≥ 0 holds. This leads to the following model:
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max z = 4x1 + 5x2 + x3 + 0x4 + 0x5

subject to

x1 + x2 + x3 +x4 = 8

x1 + 2x2 − x3 −x5 = 2

x1, x2, x3, x4, x5 ≥ 0

Next, we need to choose a basis; the one formed by extracting the first and the
fourth columns out of matrixA, for instance. The corresponding basic solution is
computed like this:

xB = B−1b =





1 1

1 0





−1 



8

2



 =





0 1

1 −1









8

2



 =





2

6





The basic solution is feasible, and thus it lies in the feasible region. The cor-
responding objective value is computed as follows:

z = cTBxB = (4, 0)





2

6



 = 8.

Let us analyze whether the basic feasible solution that has thus been computed
can be improved.

Selection of the vector entering the basis. In order to select the entering
vector, we need to compute the reduced cost coefficients z2 − c2, z3 − c3 and
z5 − c5 for the nonbasic vectors a2, a3 and a5.

• Calculation of the reduced cost coefficient z2 − c2.

a2 =





1

2



 ; y2 = B−1a2 =





0 1

1 −1









1

2



 =





2

−1





z2 − c2 = cTBy2 − c2 = (4, 0)





2

−1



− 5 = 3 > 0.

• Calculation of the reduced cost coefficient z3 − c3.

Operations Research. Linear Programming



44 Chapter 2. The simplex method

a3 =





1

−1



 ; y3 = B−1a3 =





0 1

1 −1









1

−1



 =





−1

2





z3−c3 = (4, 0)





−1

2



−1 = −5 < 0 → the solution can be improved.

• Calculation of the reduced cost coefficient z5 − c5.

a5 =





0

−1



 ; y5 = B−1a5 =





0 1

1 −1









0

−1



 =





−1

1





z5− c5 = (4, 0)





−1

1



− 0 = −4 < 0 → the solution can be improved.

There are two options to improve the solution: to introduce vector a3 in the
basis or to introduce a5. We use the entering vector rule so that we can make a
decision.

zk − ck = min
j
{zj − cj / zj − cj < 0} =

= min{z3 − c3 = −5 , z5 − c5 = −4} = −5.

Consequently, vector a3 is selected to enter the basis.

Selection of the vector leaving the basis. In order to select the leaving vector,
we need to consider vector y3 and the basic solution xB.

y3 =





y13

y23



 =





−1

2



 , xB =





xB1

xB2



 =





2

6





Vector ar, which satisfies the leaving rule, will be selected to leave the basis:

xBr

yr3
= min

i

�

xBi

yi3
/ yi3 > 0

�

= min

�

xB2

y23
=

6

2

�

= 3.

The vector placed in the second position in the basis is selected to leave it, that
is a4. This yields a new basis, a new basic feasible solution and a new objective
value.
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• By using rule (2.9), we compute the new solution.

∧

xB1= xB1 − xB2

y13
y23

= 2− 6

�

−1

2

�

= 5.

∧

xB2=
xB2

y23
=

6

2
= 3.

• By using rule (2.10), we compute the new objective value.

∧

z= z −
xB2

y23
(z3 − c3) = 8−

6

2
(−5) = 23.

We can see that the new basic solution
∧

xB is feasible, and that it has improved
the objective value. The same procedure may be applied repeatedly, until all the
reduced cost coefficients become nonnegative. Once this condition holds, the
solution will be optimal; the condition mentioned is established in the following
theorem. �

Theorem 2.4.2 (Optimality condition). Consider a linear model in standard
form:

max z = cTx

subject to
Ax = b

x ≥ 0

Let B be a basis formed by columns of A, and let xB = B−1b be its corre-
sponding basic feasible solution, and z = cTBxB its objective value. If zj − cj
is greater than or equal to zero for every vector aj of matrix A, then xB is an
optimal basic feasible solution for the model.

2.4.5 Unbounded solution

As we saw in the graphical solution to linear models, in some cases the optimal
objective value may improve indefinitely. The following theorem states the nec-
essary conditions for the solution to be unbounded.

Operations Research. Linear Programming



46 Chapter 2. The simplex method

Theorem 2.4.3 Consider a linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

Let B be a basis formed by columns ofA, and let xB = B−1b be its correspond-
ing basic feasible solution, and z = cTBxB its objective value.

If there exists a nonbasic vector ak in matrixA such that zk − ck < 0, and for
such vector ak all coordinates yik are less than or equal to zero, i = 1, . . . ,m,
then the solution to the model is unbounded.

Proof. Let xB be a basic feasible solution. As it is a solution, it satisfies the
constraints:

xB1a1 + xB2a2 + · · ·+ xBmam = b.

If there exists a nonbasic vector ak in matrixA such that zk − ck < 0, then the
objective value may be improved. But since yik ≤ 0 holds, i = 1, . . . ,m, none
of the basic vectors a1, . . . , am can leave the basis so that a better basic feasible
solution can be calculated. That is, none of them can be substituted by the entering
vector ak. However, a new solution (although not a basic one) may be computed,
which will make the objective value z take on arbitrarily large values.

Let us add and subtract θak on the left hand side of the previous equation,
being θ any positive real value. This leads to:

xB1a1 + xB2a2 + · · ·+ xBmam − θak + θak = b.

m
�

i=1

xBiai − θak + θak = b (2.11)

Vector ak is nonbasic, and it can be written as a linear combination of the basic
vectors:

ak =
m
�

i=1

yikai.

In Equation (2.11), if we substitute vector ak by its expression as a linear
combination of the basic vectors, we get:

m
�

i=1

xBiai − θ
m
�

i=1

yikai + θak = b,
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which can also be written as follows:

m
�

i=1

(xBi − θyik)ai + θak = b.

Solutions calculated like this can have more than m components greater than
zero, and thus, they are not basic solutions.

∧

x=















































xB1 − θy1k

xB2 − θy2k
...

xBm − θymk

0
...

θ
...

0















































(2.12)

It can be verified that it is a feasible solution. Since θ > 0 holds, and as
xBi ≥ 0, yik ≤ 0, i = 1, . . . ,m, then xBi − θyik ≥ 0, i = 1, . . . ,m.

The objective value is calculated as follows:

∧

z=

m
�

i=1

cBi(xBi − θyik) + ckθ =

m
�

i=1

cBixBi − θ

m
�

i=1

cBiyik + ckθ =

= z − θzk + θck = z − θ(zk − ck)

Since zk − ck < 0 holds, the objective value
∧

z will increase according to the
value of θ, and the solution to the model will be unbounded. �
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Example. Let us compute the optimal solution to the following linear prob-
lem:

max z = −3x1 + 2x2

subject to
x1 − x2 ≤ 5

2x1 − 3x2 ≤ 10

x1, x2 ≥ 0

Writing the problem in standard form we have:

max z = −3x1 + 2x2 + 0x3 + 0x4

subject to

x1 −x2 +x3 = 5

2x1 −3x2 +x4 = 10

x1, x2, x3, x4 ≥ 0

We select basis B = (a3 a4) and compute the corresponding basic solution.

xB = B−1b =





5

10





The solution is feasible, and the objective value associated with it is the following:

z = cTBxB = (0, 0)





5

10



 = 0.

Let us apply Theorem 2.4.1 to see if there is a better solution to the problem. In
order to find out, we need to compute the reduced cost coefficients z1 − c1 and
z2 − c2.

• The reduced cost coefficient z1 − c1.

a1 =





1

2



 ; y1 = B−1a1 =





1 0

0 1









1

2



 =





1

2




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z1 − c1 = cTBy1 − c1 = (0, 0)





1

2



− (−3) = 3.

• The reduced cost coefficient z2 − c2.

a2 =





−1

−3



 ; y2 = B−1a2 =





1 0

0 1









−1

−3



 =





−1

−3





z2 − c2 = cTBy2 − c2 = (0, 0)





−1

−3



− 2 = −2.

According to the entering vector rule, vector a2 is chosen to enter the basis.

min
j

{ zj − cj / zj − cj < 0 } = min { z2 − c2 = −2 } = −2

According to the leaving vector rule, we check vector y2 and find that all
the components in the vector are negative, and thus, none of the basic vectors
satisfy the leaving vector rule. Conditions established in Theorem 2.4.3 hold;
consequently, the solution is unbounded.

As the original problem has only two decision variables, it can also be solved
graphically. This allows the graphical representation of the unbounded solution.

x1

x2

x1 − x2 = 5

2x1 − 3x2 = 10

max
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�

2.4.6 Multiple optimal solutions
When analyzing the graphical solution of linear models, we have already seen that
some problems have more than one optimal solution. In such cases, it is said that
the problem has multiple optimal solutions. This kind of solution may arise both
with bounded or unbounded variables.

The following theorem establishes the conditions under which a linear prob-
lem has multiple optimal solutions.

Theorem 2.4.4 Consider a linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

Let B be a basis formed by columns of A, and let xB = B−1b be its corre-
sponding basic feasible solution, and z = cTBxB its objective value.

If zj − cj ≥ 0 holds for every vector aj of matrix A, then the solution xB is
optimal. Moreover, if there exists a nonbasic vector ak such that zk − ck = 0, and
at least one coordinate yik > 0, i = 1, . . . ,m, then there exist multiple optimal
solutions.

Proof. Let xB be a basic feasible solution. Since zj − cj ≥ 0 holds for every
vector aj of matrixA, from Theorem 2.4.2 we can say that xB is optimal.

If there exists a nonbasic vector ak such that zk − ck = 0, and at least one
coordinate yik > 0, i = 1, . . . ,m, then vector ak can be selected to enter the basis
to substitute a basic vector ar that satisfies the leaving vector rule:

xBr

yrk
= min

i

�

xBi

yik
/yik > 0

�

We then have a new basis
∧

B and a new basic feasible solution
∧

xB . The new
objective value is computed as follows:

∧

z= z −
xBr

yrk
(zk − ck) = z − 0 = z.
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As a result,
∧

xB is also optimal, because the objective value obtained for it is
identical to the one obtained for xB, which has been proven to be optimal. �

Theorem 2.4.5 Consider a linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

Let x1, . . . ,xp be optimal basic feasible solutions of the model. Then, every gen-
eralized convex linear combination of them is an optimal feasible solution to the
model.

Proof. Let x be a vector obtained by any convex linear combination of the
basic feasible solutions x1, . . . ,xp.

x =

p
�

i=1

µixi , µi ≥ 0, i = 1, . . . , p ,

p
�

i=1

µi = 1

Let us prove that x is a solution which is also feasible and optimal.

1. x is a solution.

Since each xi is a solution, i = 1, . . . , p, they verifyAxi = b. It follows:

Ax = A(

p
�

i=1

µixi) =

p
�

i=1

µiAxi = b

p
�

i=1

µi = b.

Therefore, x is a solution.

2. x is feasible.

Since xi ≥ 0 and µi ≥ 0, i = 1, . . . , p, it follows:

x =

p
�

i=1

µixi ≥ 0.

Therefore, x is feasible.
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3. x is optimal.

Each xi is optimal, i = 1, . . . , p, that is, z∗ = cTxi. It follows:

cTx = cT
p

�

i=1

µixi =

p
�

i=1

µic
Txi = z∗

p
�

i=1

µi = z∗.

Therefore, x is optimal.

�

Theorem 2.4.4 and Theorem 2.4.5 establish the conditions under which mul-
tiple optimal solutions for bounded variables are obtained. However, in some
problems there are multiple optimal solutions for unbounded variables, such that
the objective value has a bounded value. The following theorem establishes the
conditions under which multiple optimal solutions are found for unbounded vari-
ables.

Theorem 2.4.6 Let us consider a linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

Let B be a basis formed by columns of A, and let xB = B−1b be its corre-
sponding basic feasible solution, and z = cTBxB its objective value. If zj − cj ≥ 0
holds for every vector aj of matrixA, then the solution xB is optimal.

If there exists a nonbasic vector ak in matrix A such that zk − ck = 0, and
for such vector ak all coordinates yik are less than or equal to zero, i = 1, . . . ,m,
then there are multiple optimal solutions with unbounded variables.

Proof. The solutions are computed as shown in Theorem 2.4.3. (see (2.12) on
page 47).

As in the cited theorem, the objective value can be computed like this:

∧

z= z − θ(zk − ck).

Since zk − ck = 0, it follows that
∧

z= z. Therefore, every solution
∧

x computed
as shown in (2.12) is optimal. �
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2.4.7 The initial basic feasible solution
When solving a linear model in standard form, we will always start with a basic
feasible solution. If we choose the canonical basis to start, it will be easy to com-
pute the corresponding basic feasible solution, because B−1 = B = I. Once the
initial basic feasible solution is computed, we apply Theorem 2.4.1 and improve
the solution until the optimality conditions stated in Theorem 2.4.2 hold. The
initial canonical basis can be of two types.

Case 1. An initial canonical basis formed by slack variables.

Consider the following linear model:

max z = cTx

subject to
Ax ≤ b

x ≥ 0

Assume that b ≥ 0. Then, we add vector y of slack variables and we get
the model in standard form.

max z = cTx+ 0Ty

subject to
Ax+ Iy = b

x,y ≥ 0

Consequently, we can choose basis B = I. As B−1 = I, it follows that:

• Calculation of the basic solution. It is feasible.

xB = B−1b = Ib = b ≥ 0.

• Calculation of the objective value. As all vectors in the initial canoni-
cal basis B correspond to slack variables, cTB = 0 holds.

z = cTBxB = 0TxB = 0.

• For each vector aj of matrixA we have to compute:
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– The coordinate vector.

yj = B−1aj = Iaj = aj.

– Calculation of the reduced cost coefficients zj − cj . As all vec-
tors in the initial canonical basis B correspond to slack variables,
cTB = 0 holds.

zj − cj = cTByj − cj = 0− cj = −cj.

As we can see, there is a great advantage in choosing the canonical basis as
the initial basis, since then all the calculations needed are directly obtained
from the linear model.

Example. Consider the following linear model:

max z = 2x1 + 3x2

subject to
3x1 + x2 ≤ 2

x1 − x2 ≤ 3

x1, x2 ≥ 0

After adding two slack variables, the model in standard form is the follow-
ing:

max z = 2x1 + 3x2 + 0x3 + 0x4

subject to

3x1 + x2 +x3 = 2

x1 − x2 +x4 = 3

x1, x2, x3, x4 ≥ 0

We choose the canonical basis B = (a3 a4) = I.

• The calculation of the solution. The solution is feasible.

xB = B−1b = I





2

3



 =





2

3




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• The objective value.

z = cTBxB = (0, 0)





2

3



 = 0

• The coordinate vector yj and the reduced cost coefficients for each
vector of matrixA.

a1 =





3

1



 → y1 = B−1a1 =





1 0

0 1









3

1



 =





3

1





z1 − c1 = cTBy1 − c1 = (0, 0)





3

1



− 2 = −2

a2 =





1

−1



 → y2 = B−1a2 =





1 0

0 1









1

−1



 =





1

−1





z2 − c2 = cTBy2 − c2 = (0, 0)





1

−1



− 3 = −3

a3 =





1

0



 → y3 = B−1a3 =





1 0

0 1









1

0



 =





1

0





z3 − c3 = cTBy3 − c3 = (0, 0)





1

0



− 0 = 0

a4 =





0

1



 → y4 = B−1a4 =





1 0

0 1









0

1



 =





0

1





z4 − c4 = cTBy4 − c4 = (0, 0)





0

1



− 0 = 0

�
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Case 2. Artificial variables in the initial basis.

In the previous case, we assumed that an initial canonical basis is at hand
in matrix A once the model has been written in standard form. However,
in many cases such a basis is not readily available. If once the model is
in standard form matrix A has no identity submatrix, then we introduce
artificial variables to find a starting canonical basis and its corresponding
basic feasible solution. We illustrate the use of the artificial variables in the
following example.

Example. Consider the following linear model:

max z = 3x1 + x2

subject to
x1 + x2 ≤ 3

x1 + 2x2 ≥ 2

x1, x2 ≥ 0

We add the slack variable x3 to the first constraint and subtract the slack
variable x4 from the second in order to obtain the standard form of the
model.

max z = 3x1 + x2 + 0x3 + 0x4

subject to

x1 + x2 +x3 = 3

x1 + 2x2 −x4 = 2

x1, x2, x3, x4 ≥ 0

Matrix A in the model written in standard form has no identity submatrix.
We need to add an artificial variable, w1 ≥ 0, to the second constraint in
order to get a canonical basis. This leads to the following constraints set:

x1 + x2 +x3 = 3

x1 + 2x2 −x4 + w1 = 2
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We now choose the canonical basis B = (a3 aw1), and compute its corre-
sponding basic feasible solution.

xB = B−1b =





1 0

0 1









3

2



 =





3

2





However, xB is not a solution to the initial linear model, because the artificial
variable w1 = 2 > 0; constraint x1 + 2x2 − x4 = 2 does not hold. �

2.4.8 The simplex tableau
In the process of computing the optimal solution for a linear model in standard
form, all the calculations that correspond to each of the bases are gathered in a
tableau, which is usually called the simplex tableau. The process always begins
by selecting a canonical basis in matrix A once the model is in standard form. In
case it is not possible to choose a canonical basis with the slack variables, then all
the necessary artificial variables are introduced to the model. The simplex tableau
is the following:

Original variables Auxiliary variables

x1 . . . xn xn+1 . . . xj . . .

z1 − c1 . . . zn − cn zn+1 − cn+1 . . . zj − cj . . . z

cB1 aB1 y11 . . . y1n y1,n+1 . . . y1,j . . . xB1

...
...

...
...

...

cBi aBi yi1 . . . yin yi,n+1 . . . yi,j . . . xBi

...
...

...
...

...

cBm aBm ym1 . . . ymn ym,n+1 . . . ym,j . . . xBm

• Original variables of the model, x1, . . . , xn, and auxiliary variables, either
slack variables or artificial variables, xn+1, . . . , xj , . . ., are placed at the top
of the tableau.

• Basic vectors, aB1, . . . , aBi, . . . , aBm, are placed at the first column of the
tableau.
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• Outside of the tableau, to the left of the basic vectors, the basic components
of vector cT are placed: cB1, . . . , cBi, . . . , cBm.

• The coordinate vectors yj for each aj relative to the basis are placed in the
rest of the columns of the central part of the tableau.

• The components of the basic feasible solution, xB1, . . . , xBi, . . . , xBm, are
placed in the last column of the tableau.

• In row zero of the tableau, the reduced cost coefficients zj − cj are placed.
The objective value z is written in the last column of the row.

Example. Let us consider the linear model in standard form of the example
analized on page 54. The simplex tableau corresponding to the canonical basis is
the following:

x1 x2 x3 x4

−2 −3 0 0 0

0 a3 3 1 1 0 2

0 a4 1 −1 0 1 3

�

If the initial canonical basis B is formed by just slack variables, like in the
previous example, then the simplex tableau can be written like this:

x1 x2 . . . xn xn+1 xn+2 . . . xn+m

cTBB
−1A− cT cTBB

−1 cTBxB

cB B B−1A B−1 xB

In the initial tableau, B−1 = I holds. For subsequent bases B and subsequent
tableaux, the inverse B−1 is always situated in the columns corresponding to the
initial canonical basis. If the initial canonical basis B is formed by just slack
variables, like in the previous example, then B−1 can be found as shown in the
previous tableau. But if there are artificial variables in the first canonical basis,
then it becomes necessary to identify the columns where B−1 is placed.
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2.5 The Big-M method
As we previously said, when matrix A has no identity submatrix (see example
on page 56) we introduce artificial variables to the model in standard form. By
proceeding like this, we obtain the initial canonical basis.

However, by introducing artificial variables, we change the problem, since
they are not part of the original problem. In order to return to the original problem,
we must force artificial variables to zero, because a constraint which has had an
artificial variable added is equivalent to the original constraint if and only if the
artificial variable is equal to zero.

The Big-Mmethod is used for this purpose. The strategy consists in penalizing
the artificial variables in the objective function, that is, giving artificial variables
an unfavourable status in the objective function. This is done by using a very
large positive numberM (thus the name of the method), and using a penalty rule
which consists in assigning to the artificial variables a cost coefficient of −M , in
maximization problems.

Example. Consider the following linear model:

max z = −5x1 + 6x2 + 7x3

subject to
2x1 + 10x2 − 6x3 ≥ 30
5

2
x1 − 3x2 + 5x3 ≤ 10

2x1 + 2x2 + 2x3 = 5

x1, x2, x3 ≥ 0

We write the linear model in standard form, add the necessary artificial vari-
ables to obtain the initial identity matrix and penalize them in the objective func-
tion. This leads to the following:

max z = −5x1 + 6x2 + 7x3 + 0x4 + 0x5 −Mw1 −Mw2

subject to

2x1 + 10x2 − 6x3 −x4 +w1 = 30

5

2
x1 − 3x2 + 5x3 +x5 = 10

2x1 + 2x2 + 2x3 +w2 = 5

x1, x2, x3, x4, x5, w1, w2 ≥ 0
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Artificial variables w1 and w2 are used to obtain the initial canonical basis
B = I = (aw1

a5 aw2
). As the objective function has been penalized for the two

artificial variables, cTB = (−M, 0, −M). The penalty affects the reduced cost
coefficients zj − cj and the objective value z. The initial simplex tableau is:

x1 x2 x3 x4 x5 w1 w2

−4M + 5 −12M − 6 4M − 7 M 0 0 0 −35M

−M aw1 2 10 −6 −1 0 1 0 30

0 a5
5

2
−3 5 0 1 0 0 10

−M aw2 2 2 2 0 0 0 1 5

�

2.6 The simplex algorithm
Consider a linear model in maximization standard form (artificial variables will
be added to it if they are needed to obtain the initial canonical basis B = I, and
they will be penalized in the objective function). The simplex algorithm can be
summarized in the following steps:

Step 1. Construct the initial simplex tableau.

Step 2.

• If there exists zj − cj < 0, then the solution may be improved. Go to
Step 4.

• If zj − cj ≥ 0 for every vector aj of matrixA, then go to Step 3.

Step 3.

• If there exists an artificial variable with a positive value1, then the
problem is infeasible. Stop.

1If there does not exist any artificial variable with positive value, but we can find an artificial
variable in the basis which has value zero, then there are two possibilities: either the solution is
degenerate or there exist redundant constraints in the model (see examples on page 82.)
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• If there is no artificial variable in the basis, then the solution xB in the
tableau is optimal.
* zj−cj ≥ 0 holds for every vector aj of matrixA. If zj−cj > 0 for
every nonbasic vector aj , then xB is the unique optimal solution.
Stop.

* zj − cj ≥ 0 holds for every vector aj of matrixA. If there exists a
nonbasic vector ak in matrixA such that zk − ck = 0, and at least
one of its coordinates yik is greater than zero, i = 1, . . . ,m, then
another basic feasible solution can be computed. The problem
has multiple optimal solutions. Go to Step 5.

* zj − cj ≥ 0 holds for every vector aj of matrix A. If there exists
a nonbasic vector ak in matrix A such that zk − ck = 0, and if
yik ≤ 0, i = 1, . . . ,m holds for such vector ak, then the problem
has multiple optimal solutions, but they are not basic solutions.
Stop.

Step 4.

• If there exists a nonbasic vector aj in matrix A such that zj − cj < 0,
and for such vector aj there is no positive coordinate in vector yj , then
the solution is unbounded. Stop.

• If there exists a nonbasic vector aj in matrix A such that zj − cj < 0,
and for such vector aj there exists at least a coordinate greater than
zero in vector yj , then go to Step 5.

Step 5. Select an entering vector ak and a leaving vector ar, according to the
following rules:

• Vector ak is selected to enter the base, such that:

zk − ck = min
j
{zj − cj/zj − cj ≤ 0}

The kth column is called the pivot column.
• Vector ar is selected to leave the basis, such that:

xBr

yrk
= min

i

�

xBi

yik
/yik > 0

�

The rth row is called the pivot row.

Operations Research. Linear Programming



62 Chapter 2. The simplex method

The coordinate yrk which is both in the pivot column and in the pivot row is
called the pivot element.

Step 6. Update the tableau.

• In the first column of the tableau, replace the leaving vector in the
basis with the entering one.

• The new pivot row is computed by dividing the current pivot row by
the pivot element yrk.

• In order to update all other rows, including row zero, we first define
the row multipliers.

* The multiplier for the ith row: mi =
yik
yrk

, i = 1, . . . ,m, i �= r.

* The multiplier for row zero: m0 =
zk − ck
yrk

.

Rows are updated as follows: the new row is equal to the current row
− the row multiplier × the current pivot row.

It is also possible to use the definition in order to update the reduced
cost coefficients zj − cj and the objective value z, that is, zj − cj =
cTByj − cj , z = cBxB.

Once all rows in the new tableau have been updated, go to Step 2.

If the problem has multiple optimal solutions, then new optimal bases will be
computed until we reach a basis that had already been found.

2.7 Some additional examples

In this section we solve four linear models by using the simplex algorithm, and
interpret the tableau for different kinds of solutions: unique optimal solution, in-
feasible problem, multiple optimal solutions and unbounded problem.

Example. (A unique optimal solution).
Consider the following linear model.
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max z = 6x1 + 4x2 + 5x3 + 5x4

subject to
x1 + x2 + x3 + x4 ≤ 3

2x1 + x2 + 4x3 + x4 ≤ 4

x1 + 2x2 − 2x3 + 3x4 ≤ 10

x1, x2, x3, x4 ≥ 0

We transform the model into the maximization standard form.

max z = 6x1 + 4x2 + 5x3 + 5x4 + 0x5 + 0x6 + 0x7

subject to

x1 + x2 + x3 + x4 +x5 = 3

2x1 + x2 + 4x3 + x4 +x6 = 4

x1 + 2x2 − 2x3 + 3x4 +x7 = 10

x1, x2, x3, x4, x5, x6, x7 ≥ 0

We construct the initial simplex tableau by considering B = (a5 a6 a7) as the
initial basis. Since the basis is canonical, and formed by just slack variables, all
the initial calculations match the parameters of the model, and thus, they are easily
put together in the tableau, as we saw in the example on page 54. The second and
third tableaux show the calculations made in the second and third iterations of the
simplex algorithm to reach the optimal solution. The pivot element is highlighted
by a square, and the row multipliers are out of the tableau, on the right hand side.
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x1 x2 x3 x4 x5 x6 x7

−6 −4 −5 −5 0 0 0 0

0 a5 1 1 1 1 1 0 0 3 m1 =
y11
y21

= 1

2

0 a6 2 1 4 1 0 1 0 4

0 a7 1 2 −2 3 0 0 1 10 m3 =
y31
y21

= 1

2

0 −1 7 −2 0 3 0 12

0 a5 0 1

2
−1 1

2
1 −1

2
0 1

6 a1 1 1

2
2 1

2
0 1

2
0 2 m2 =

y24
y14

= 1

0 a7 0 3

2
−4 5

2
0 −1

2
1 8 m3 =

y34
y14

= 5

0 1 3 0 4 1 0 16

5 a4 0 1 −2 1 2 −1 0 2

6 a1 1 0 3 0 −1 1 0 1

0 a7 0 −1 1 0 −5 2 1 3

Since zj − cj ≥ 0 holds for every vector aj of matrix A, the iterations of the
simplex algorithm are finished. The problem has a unique optimal solution.

x∗

1 = 1, x∗

2 = 0, x∗

3 = 0, x∗

4 = 2, x∗

5 = 0, x∗

6 = 0, x∗

7 = 3, z∗ = 16

Further details about calculations made in each of the iterations of the simplex
algorithm are shown next:

1st iteration

There are negative reduced cost coefficients in the initial tableau, and thus, the
solution may be improved.

• The entering vector ak is selected. zk − ck = min
j
{zj − cj/zj − cj ≤ 0}.

min{−6,−4,−5,−5} = −6 → a1 enters.

The first column of the first tableau is the pivot column.
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• The leaving vector ar is selected.
xBr

yr1
= min

i

�

xBi

yi1
/yi1 > 0

�

.

min

�

3

1
,
4

2
,
10

1

�

= min{3, 2, 10} = 2 → a6 leaves.

The second row of the first tableau is the pivot row.

• Pivot-element: 2

The following calculations are made to get the second tableau, that is, the one
corresponding to the basis B = (a5 a1 a7).

• Pivot row. In order to compute the second row of the new tableau, we need
to divide each value of the pivot row of the first tableau by the pivot element.

1

2
(2, 1, 4, 1, 0, 1, 0, 4) = (1,

1

2
, 2,

1

2
, 0,

1

2
, 0, 2)

• 1st row. Multiplier: m1 =
y11
y21

= 1

2
. In order to compute the first row of the

new tableau, we consider rows in the first tableau and proceed as follows:
“first row” − “multiplier” × “pivot row”

(1 , 1 , 1 , 1 , 1 , 0 , 0 , 3)−
1

2
(2 , 1 , 4 , 1 , 0 , 1 , 0 , 4) =

= (0 ,
1

2
,−1 ,

1

2
, 1 ,−

1

2
, 0 , 1)

• 3rd row. Multiplier: m3 = y31
y21

= 1

2
. In order to compute the third row

of the new tableau, we consider rows in the first tableau and proceed as
follows: “third row” − “multiplier” × “pivot row”

(1 , 2 ,−2 , 3 , 0 , 0 , 1 , 10)−
1

2
(2 , 1 , 4 , 1 , 0 , 1 , 0 , 4) =

= (0 ,
3

2
,−4 ,

5

2
, 0 , −

1

2
, 1 , 8)

• Row zero. Multiplier: z1−c1
y21

= −6

2
= −3. In order to compute row zero

of the new tableau, we consider rows in the first tableau and proceed as
follows:
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“Row zero” − “multiplier” × “pivot row”

(−6 ,−4 ,−5 ,−5 , 0 , 0 , 0 , 0)− (−3)(2 , 1 , 4 , 1 , 0 , 1 , 0 , 4) =

= (0 ,−1 , 7 ,−2 , 0 , 3 , 0 , 12)

An alternative way to update row zero, reduced cost coefficients zj − cj , is
to use the definition, that is, we compute zj−cj = cTByj−cj by considering
the new basis. For instance,

z1 − c1 = (0 , 6 , 0)











0

1

0











− 6 = 6− 6 = 0

• The objective value. We use the definition and compute the objective value
for the new basis, that is,

z = cTBxB = (0, 6, 0)











1

2

8











2. iteration

There are negative reduced cost coefficients in the second tableau, and thus,
the solution may be improved. Calculations are made as in the first iteration.

• Entering vector. min{−1,−2} = −2 → a4 enters the basis. Pivot column:
fourth column of the second tableau.

• Leaving vector. min{ 1
1

2

, 2
1

2

, 8
5

2

} = min{2, 4, 16

5
} = 2 → a5 leaves the basis.

Pivot row: first row of the second tableau.

• Pivot element:
1

2
.

• Pivot row.

2(0 ,
1

2
,−1 ,

1

2
, 1 , −

1

2
, 0 , 1) = (0 , 1 ,−2 , 1 , 2 ,−1 , 0 , 2)
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• 2nd row. Multiplier: m2 =
y24
y14

= 1

(1 ,
1

2
, 2 ,

1

2
, 0 ,

1

2
, 0 , 2)− 1(0 ,

1

2
,−1 ,

1

2
, 1 ,−

1

2
, 0 , 1) =

= (1 , 0 , 3 , 0 ,−1 , 1 , 0 , 1)

• 3rd row. Multiplier: m3 =
y34
y14

= 5

(0 ,
3

2
,−4 ,

5

2
, 0 ,−

1

2
, 1 , 8)− 5(0 ,

1

2
,−1 ,

1

2
, 1 ,−

1

2
, 0 , 1) =

= (0 ,−1 , 1 , 0 ,−5 , 2 , 1 , 3)

• Row zero. Multiplier:
z4 − c4
y14

= −4

(0 ,−1 , 7 ,−2 , 0 , 3 , 0 , 12) + 4(0 ,
1

2
,−1 ,

1

2
, 1 ,−

1

2
, 0 , 1) =

= (0 , 1 , 3 , 0 , 4 , 1 , 0 , 16)

�

Example. (Infeasible problem). The initial tableau for the following linear
model has been constructed in the example of page 59.

max z = −5x1 + 6x2 + 7x3 + 0x4 + 0x5 −Mw1 −Mw2

subject to

2x1 + 10x2 − 6x3 −x4 +w1 = 30

5

2
x1 − 3x2 + 5x3 +x5 = 10

2x1 + 2x2 + 2x3 +w2 = 5

x1, x2, x3, x4, x5, w1, w2 ≥ 0

We apply the simplex algorithm until we reach the optimal tableau. All the
calculations can be seen in the following sequence of tableaux:
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x1 x2 x3 x4 x5 w1 w2

−4M + 5 −12M − 6 4M − 7 M 0 0 0 −35M

−M aw1 2 10 −6 −1 0 1 0 30 5

0 a5
5

2
−3 5 0 1 0 0 10 −3

2

−M aw2 2 2 2 0 0 0 1 5

8M + 11 0 16M − 1 M 0 0 6M + 3 −5M + 15

−M aw1 −8 0 −16 −1 0 1 −5 5

0 a5
11

2
0 8 0 1 0 3

2

35

2

6 a2 1 1 1 0 0 0 1

2

5

2

zj−cj ≥ 0 holds in the final tableau for every vector aj of matrixA, and thus,
the simplex algorithm stops. However, the use of the penalty M has not forced
the artificial variable w1 to zero in the final tableau. We conclude that the original
model is infeasible, because w1 = 5. �

Example. (Multiple optimal solutions.) Consider the following linear model:

min z = 3x1 + 6x2

subject to
x1 + 2x2 ≥ 4

x1 + x2 ≤ 5

3x1 + 4x2 ≥ 10

x1, x2 ≥ 0

The transformation of the model into the maximization standard form, with
the addition of the necessary artificial variables and their penalty in the objective
function, yields the following:
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max (−z) = −3x1 − 6x2 + 0x3 + 0x4 + 0x5 −Mw1 −Mw2

subject to

x1 +2x2 −x3 +w1 = 4

x1 +x2 +x4 = 5

3x1 +4x2 −x5 +w2 = 10

x1, x2, x3, x4, x5, w1, w2 ≥ 0

The simplex algorithm tableaux are the following:

x1 x2 x3 x4 x5 w1 w2

−4M + 3 −6M + 6 M 0 M 0 0 −14M

−M aw1 1 2 −1 0 0 1 0 4

0 a4 1 1 0 1 0 0 0 5 1

2

−M aw2 3 4 0 0 −1 0 1 10 2

−M 0 −2M + 3 0 M 3M − 3 0 −2M − 12

−6 a2
1

2
1 −1

2
0 0 1

2
0 2 −1

4

0 a4
1

2
0 1

2
1 0 −1

2
0 3 1

4

−M aw2 1 0 2 0 −1 −2 1 2

−3

2
0 0 0 3

2
M M − 3

2
−15

−6 a2
3

4
1 0 0 −1

4
0 1

4

5

2

3

2

0 a4
1

4
0 0 1 1

4
0 −1

4

5

2

1

2

0 a3
1

2
0 1 0 −1

2
−1 1

2
1

0 0 3 0 0 M − 3 M −12

−6 a2 0 1 −3

2
0 1

2

3

2
−1

2
1

0 a4 0 0 −1

2
1 1

2

1

2
−1

2
2 1

−3 a1 1 0 2 0 −1 −2 1 2 −2

zj − cj ≥ 0 holds in the final tableau for every vector of the matrix. Moreover,
there is no artificial variable in the optimal basis, and thus, we have an optimal
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basic feasible solution for the original linear model: x∗

1 = 2, x∗

2 = 1, x∗

3 = 0,
x∗

4 = 2, x∗

5 = 0, z∗ = 12. This solution corresponds to the extreme point A of the
graphic.

If we look at the optimal tableau, we see that z5−c5 = 0 holds for the nonbasic
vector a5. This means that the problem has multiple optimal solutions; it is
possible to compute another optimal basic feasible solution. To do so, we select
vector a5 to enter the basis, and using the leaving vector rule, we choose vector a2

as the leaving vector. Given that the pivot element is 1

2
, the new tableau is:

x1 x2 x3 x4 x5 w1 w2

0 0 3 0 0 M − 3 M −12

0 a5 0 2 −3 0 1 3 −1 2

0 a4 0 −1 1 1 0 −1 0 1

−3 a1 1 2 −1 0 0 1 0 4

Another optimal basic feasible solution: x∗

1 = 4, x∗

2 = 0, x∗

3 = 0, x∗

4 =
1, x∗

5 = 2, z∗ = 12. This solution corresponds to the extreme point B of the
graphical solution on page 71.

In the second optimal tableau we see that once again the condition for multiple
optimal solutions holds, because z2− c2 = 0, being vector a2 nonbasic. However,
if we enter vector a2 to the basis and select a5 as the leaving vector, this yields the
optimal solution previously computed. Thus, the simplex algorithm stops.

All points in the segment between the extreme pointsA andB are also optimal
solutions to the problem.

OpenCourseWare, UPV/EHU



2.7. Some additional examples 71

���
���
���
���

���
���
���
���

x1

x2

x1 + 2x2 = 4

x1 + x2 = 5

3x1 + 4x2 = 10

A

B

min

�

Example. (Unbounded solution.)
Consider the following linear model:

max z = x1 − 3x2

subject to
2x1 + 2x2 ≥ 4

−4x1 − 2x2 ≤ −6

x1, x2 ≥ 0

After transforming it to the standard form and adding the needed artificial
variables to obtain the initial B = I canonical basis, the model can be written as:

max z = x1 − 3x2 + 0x3 + 0x4 −Mw1 −Mw2

subject to

2x1 + 2x2 −x3 +w1 = 4

4x1 + 2x2 −x4 +w2 = 6

x1, x2, x3, x4, w1, w2 ≥ 0
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The following sequence of tableaux show the calculations made along the
three iterations of the simplex algorithm.

x1 x2 x3 x4 w1 w2

−6M − 1 −4M + 3 M M 0 0 −10M

−M aw1 2 2 −1 0 1 0 4 1

2

−M aw2 4 2 0 −1 0 1 6

0 −M +
7

2
M − 1

2
M − 1

4
0 3

2
M +

1

4
−M +

3

2

−M aw1 0 1 −1 1

2
1 −1

2
1

1 a1 1 1

2
0 −1

4
0 1

4

3

2

1

2

0 0 7

2
−2 M − 7

2
M + 2 −2

−3 a2 0 1 −1 1

2
1 −1

2
1

1 a1 1 0 1

2
−1

2
−1

2

1

2
1 −1

0 4 −1

2
0 M +

1

2
M 2

0 a4 0 2 −2 1 2 −1 2

1 a1 1 1 −1

2
0 1

2
0 2

In the last tableau we can see that vector a3 is nonbasic, that z3− c3 < 0 holds
and that yi3 ≤ 0, i = 1, 2. It follows that the solution is unbounded.
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x1

x2

2x1 + 2x2 = 4

−4x1 − 2x2 = −6

max

If we look at the graphical solution, we can see that moving the objective
function line in the optimization direction (bottom right direction), it will always
intersect the feasible region. Therefore, z has an arbitrarily large value. The
solution is unbounded. �

2.8 The two-phase method
The two-phase method is analog to the Big-M method in the sense that both are
used when artificial variables are needed to get the initial B = I canonical basis
in a model written in standard form. The aim of the two methods is to reach
an optimal solution where all the artificial variables are zero. To accomplish it,
the Big-M method uses the strategy of penalizing them in the objective function,
while the two-phase method minimizes the sum of the artificial variables in a first
phase.

The two-phase method is outlined here:

Phase 1. In the first phase, the constraints of the linear model are considered,
but instead of optimizing the original objective function, a new objective
function is defined: to minimize the sum of the artificial variables. The
simplex algorithm is used to optimize the model, and the following two
cases may arise:
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• If the optimal objective value is greater than zero, then the original
linear model is infeasible.

• Otherwise, the original linear model is feasible. Go to Phase 2.

Phase 2. In the second phase, the original objective function is optimized, taking
the optimal tableau obtained in the first phase as starting point. The artificial
variables are discarded, and as the objective function of the model has been
changed, the reduced cost coefficients zj − cj must be updated. Afterwards,
the simplex algorithm is used until the optimality condition holds.

Next, two linear models are solved by using the two-phase method and details
are discussed.

Example. Consider the following linear model.

max z = 2x1 + 3x2 − 5x3

subject to
2x1 + 2x2 + 2x3 = 14

−2x1 + 5x2 − x3 ≤ −10

x1, x2, x3 ≥ 0

We transform the model into the standard form and introduce the artificial
variables w1 and w2:

max z = 2x1 + 3x2 − 5x3 + 0x4 + 0w1 + 0w2

subject to

2x1 + 2x2 + 2x3 +w1 = 14

2x1 − 5x2 + x3 −x4 +w2 = 10

x1, x2, x3, x4, w1, w2 ≥ 0

Phase 1. The phase 1 objective is to minimize the sum of the two artificial
variables introduced in the model, that is, min z� = w1 + w2. We transform it
into the maximization form before using the simplex algorithm.

OpenCourseWare, UPV/EHU



2.8. The two-phase method 75

max (−z�) = 0x1 + 0x2 + 0x3 + 0x4 − w1 − w2

subject to

2x1 + 2x2 + 2x3 +w1 = 14

2x1 − 5x2 + x3 −x4 +w2 = 10

x1, x2, x3, x4, w1, w2 ≥ 0

The simplex algorithm tableaux are the following:

x1 x2 x3 x4 w1 w2

−4 3 −3 1 0 0 −24

−1 aw1 2 2 2 0 1 0 14 1

−1 aw2 2 −5 1 −1 0 1 10

0 −7 −1 −1 0 2 −4

−1 aw1 0 7 1 1 1 −1 4

0 a1 1 −5

2

1

2
−1

2
0 1

2
5 − 5

14

0 0 0 0 1 1 0

0 a2 0 1 1

7

1

7

1

7
−1

7

4

7

0 a1 1 0 6

7
−1

7

5

14

1

7

45

7

Since zj − cj ≥ 0 holds for every vector of matrix A, the optimal tableau for
phase 1 has been found. Moreover, since z�∗ = 0, the original linear model is
feasible, and we proceed to compute the optimal solution in phase 2.

Phase 2. We optimize the objective function of the original linear model:
max z = 2x1 + 3x2 − 5x3. We update the reduced cost coefficients and z in the
optimal tableau previously obtained:

• z1 − c1 = cTBy1 − c1 = (3 , 2)





0

1



− 2 = 0.

• z2 − c2 = cTBy2 − c2 = (3 , 2)





1

0



− 3 = 0.
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• z3 − c3 = cTBy3 − c3 = (3 , 2)





1

7

6

7



+ 5 =
50

7
.

• z4 − c4 = cTBy4 − c4 = (3 , 2)





1

7

−1

7



− 0 =
1

7
.

• z = cTBxB = (3 , 2)





4

7

45

7



 =
102

7
.

Since the artificial variables are not included in the objective function consid-
ered in phase 2, we eliminate the corresponding columns. After computing the
correct reduced cost coefficients, we obtain the initial tableau for phase 2:

x1 x2 x3 x4

0 0 50

7

1

7

102

7

3 a2 0 1 1

7

1

7

4

7

2 a1 1 0 6

7
−1

7

45

7

Since zj − cj ≥ 0 holds for every vector of matrixA, the tableau displays the
optimal solution for the original linear model.

x∗

1 =
45

7
, x∗

2 =
4

7
, x∗

3 = 0, x∗

4 = 0, z∗ =
102

7
.

�

Example. We now solve the linear model of the example on page 71 by using
the two phase method.

max z = x1 − 3x2 + 0x3 + 0x4 + 0w1 + 0w2

subject to

2x1 + 2x2 −x3 +w1 = 4

4x1 + 2x2 −x4 +w2 = 6

x1, x2, x3, x4, w1, w2 ≥ 0
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Phase 1. Objective function: min z� = w1 + w2 → max(−z�) = −w1 − w2.

max(−z�) = 0x1 + 0x2 + 0x3 + 0x4 − w1 − w2.

x1 x2 x3 x4 w1 w2

−6 −4 1 1 0 0 −10

−1 aw1 2 2 −1 0 1 0 4 1

2

−1 aw2 4 2 0 −1 0 1 6

0 −1 1 −1

2
0 3

2
−1

−1 aw1 0 1 −1 1

2
1 −1

2
1

0 a1 1 1

2
0 −1

4
0 1

4

3

2

1

2

0 0 0 0 1 1 0

0 a2 0 1 −1 1

2
1 −1

2
1

0 a1 1 0 1

2
−1

2
−1

2

1

2
1

Phase 2. The objective function of the original linear model: max z = x1 −
3x2. We eliminate the two columns which correspond to the artificial variables,
and update the reduced cost coefficients and the objective value:

x1 x2 x3 x4

0 0 7

2
−2 −2

−3 a2 0 1 −1 1

2
1

1 a1 1 0 1

2
−1

2
1 −1

0 4 −1

2
0 2

0 a4 0 2 −2 1 2

1 a1 1 1 −1

2
0 2

z3 − c3 < 0 holds in the final tableau, being all the components of vector y3

negative. Therefore, the problem is unbounded. �
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2.9 The revised simplex method
The simplex algorithm described in the previous sections can be executed using a
smaller amount of calculations. The revised simplex method is a systematic pro-
cedure to implement the steps of the simplex method in a way that saves storage
space.

Let us consider a linear model in standard form:

max z = cTx

subject to
Ax = b

x ≥ 0

Suppose that we are given a basis B and a basic feasible solution xB. For
each nonbasic vector, we need to compute the reduced cost coefficients zj − cj =
cTBB

−1aj − cj and see if the actual basic feasible solution can be improved. If
there exists at least one negative zj − cj , then vector ak is selected to enter the
basis if it satisfies the entering rule:

zk − ck = min
j

{ zj − cj / zj − cj ≤ 0 }.

In order to select the leaving vector, we need to compute its coordinate vector,
that is, the pivot column yk = B−1ak. By using those coordinates and the compo-
nents in vector xB , vector ar is selected to leave the basis if it satisfies the leaving
rule:

xBr

yrk
= min

i

�

xBi

yik
/ yik > 0

�

.

In order to make all the necessary calculations we need to know the inverse
basis B−1, which changes each time the basis is changed. All we need then are
known parameters, present in the linear model. Thus, we just need a reduced
tableau, called the revised simplex tableau.

xn+1 xn+2 . . . xn+m

cTBB
−1 cTBxB

cB B B−1 xB
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Example. Let us consider the linear model of the example on page 62.

max z = 6x1 + 4x2 + 5x3 + 5x4 + 0x5 + 0x6 + 0x7

subject to

x1 + x2 + x3 + x4 +x5 = 3

2x1 + x2 + 4x3 + x4 +x6 = 4

x1 + 2x2 − 2x3 + 3x4 +x7 = 10

x1, x2, x3, x4, x5, x6, x7 ≥ 0

We choose the canonical basis B = (a5 a6 a7) and make the needed calcula-
tion to construct the corresponding initial tableau.

B =











1 0 0

0 1 0

0 0 1











, N =











1 1 1 1

2 1 4 1

1 2 −2 3











cTB = (0 , 0 , 0), cTBB
−1 = (0, 0, 0), cTN = (6 , 4 , 5 , 5)

xB = B−1b =











1 0 0

0 1 0

0 0 1





















3

4

10











=











3

4

10











The initial revised simplex tableau is the following:

x5 x6 x7

0 0 0 0

0 a5 1 0 0 3

0 a6 0 1 0 4

0 a7 0 0 1 10

Operations Research. Linear Programming



80 Chapter 2. The simplex method

In order to determine whether the solution may be improved, we need to com-
pute the zj − cj for the nonbasic vectorsN = (a1 a2 a3 a4).

cTBB
−1N− cTN = (0, 0, 0)











1 1 1 1

2 1 4 1

1 2 −2 3











− (6, 4, 5, 5) = (−6,−4,−5,−5).

z1 − c1 = min{−6,−4,−5,−5} = −6 → a1 enters the basis.

Let us compute the pivot column y1.

y1 = B−1a1 =











1 0 0

0 1 0

0 0 1





















1

2

1











=











1

2

1











Vector ar is selected to leave the basis according to the leaving vector rule:

xBr

yr1
= min

�

3

1
,
4

2
,
10

1

�

= 2 → a6 leaves the basis.

The second row of the tableau is the pivot row, and the pivot element is 2. The
multiplier for the first row is 1

2
, for the third is 1

2
, and for row zero is −6

2
. The new

tableau is the following:

x5 x6 x7

0 3 0 12

0 a5 1 −1

2
0 1

6 a1 0 1

2
0 2

0 a7 0 −1

2
1 8

Now, the basis is B = (a5 a1 a7). We proceed to compute the reduced cost
coefficients for nonbasic vectorsN = (a2 a3 a4 a6).
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cTBB
−1N− cTN = (0, 3, 0)











1 1 1 0

1 4 1 1

2 −2 3 0











− (4, 5, 5, 0) = (−1, 7,−2, 3)

z4 − c4 = min{−1,−2} = −2 → a4 enters the basis.

We compute the pivot column.

y4 = B−1a4 =











1 −1

2
0

0 1

2
0

0 −1

2
1





















1

1

3











=











1

2

1

2

5

2











Vector ar is selected to leave the basis according to the leaving vector rule:

xBr

yr4
= min

�

1
1

2

,
2
1

2

,
8
5

2

�

= min

�

2, 4,
16

5

�

= 2 → a5 leaves the basis.

The first row of the tableau is the pivot row, and the pivot element is 1

2
. The

multiplier for the second row is 1, for the third row is 5 and for row zero is −4.
We update the tableau for the new basis and obtain:

x5 x6 x7

4 1 0 16

5 a4 2 −1 0 2

6 a1 −1 1 0 1

0 a7 −5 2 1 3

Now, the basis is B = (a4 a1 a7). We proceed to compute the reduced cost
coefficients for nonbasic vectorsN = (a2 a3 a5 a6).

cTBB
−1N− cTN = (4, 1, 0)











1 1 1 0

1 4 0 1

2 −2 0 0











− (4, 5, 0, 0) = (1, 3, 4, 1).
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Since there is no negative zj − cj , the solution is optimal. Moreover, it is
unique: x∗

1 = 1, x∗

2 = 0, x∗

3 = 0, x∗

4 = 2, x∗

5 = 0, x∗

6 = 0, x∗

7 = 3, z∗ = 16. �

2.10 Some remarks
1. Round-off errors. As the simplex algorithm progresses from one basis to
another, the inevitable small round-off errors introduced at each stage accumu-
late. This happens because computers can carry only a limited number of decimal
places of accuracy, and so, computations involving real numbers are approximate.
Even though such approximations can be very accurate, the errors tend to accu-
mulate. In practice, error propagation does not usually invalidate results obtained
by the simplex algorithm. However, if the error becomes significant to the point
where the current stored value B−1 is highly inaccurate, the optimal basic feasi-
ble solution obtained may not satisfy the constraints, or if it does, it may not be
the optimal solution. This is detected by directly evaluating the error BxB − b

periodically. If BxB �= b and the error is considered to be significant, then it
is advisable to directly invert the current basis B as accurately as possible, and
proceed from that point with the iterations of the algorithm.

2. Artificial variables in the optimal basis. In some cases, once the simplex
algorithm has reached the optimal tableau, and even though we may force the
artificial variables to zero, one or more of these variables may still be basic. This
fact can show two different situations: either there are redundant constraints in the
model, or the solution is degenerate. Let us illustrate them with two examples.

Example. (Redundant constraints). Consider the following linear model:

max z = x1 + 2x2 − x3

subject to
2x1 − x2 + x3 = 12

−x1 + 2x2 + x3 = 10

x1 + x2 + 2x3 = 22

x1, x2, x3 ≥ 0

We introduce artificial variablesw1, w2 andw3, penalize the objective function
and use the simplex algorithm. After three iterations of the algorithm, we get the
optimal tableau.
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x1 x2 x3 w1 w2 w3

−2M − 1 −2M − 2 −4M + 1 0 0 0 −44M

−M aw1 2 −1 1 1 0 0 12 1

−M aw2 −1 2 1 0 1 0 10

−M aw3 1 1 2 0 0 1 22 2

−6M 6M − 4 0 0 4M − 1 0 −4M − 10

−M aw1 3 −3 0 1 −1 0 2

−1 a3 −1 2 1 0 1 0 10 −1

3

−M aw3 3 −3 0 0 −2 1 2 1

0 −4 0 2M 2M − 1 0 −10

1 a1 1 −1 0 1

3
−1

3
0 2

3
−1

−1 a3 0 1 1 1

3

2

3
0 32

3

−M aw3 0 0 0 −1 −1 1 0 0

0 0 4 2M +
4

3
2M +

5

3
0 98

3

1 a1 1 0 1 2

3

1

3
0 34

3

2 a2 0 1 1 1

3

2

3
0 32

3

−M aw3 0 0 0 −1 −1 1 0

The artificial vector aw3 is in the optimal basis even though we have driven
it to zero. In this particular case, there is a redundant constraint in the model. If
we analyze the constraints, we can verify that the third constraint can be obtained
by adding up the first and the second constraints. Thus, the third constraint is
redundant and should be omitted from the model.

�
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Example. (Degenerate solution). Consider the following linear model:

max z = x1 + x2 + 3x3

subject to
x1 + 5x2 + x3 ≤ 7

x1 − x2 + x3 = 5
1

2
x1 − 2x2 + x3 = 5

x1, x2, x3 ≥ 0

We add the slack variable x4 and the artificial variablesw1 andw2 to the model,
penalize the objective function and proceed with the simplex algorithm; the opti-
mal tableau is found in one iteration.

x1 x2 x3 x4 w1 w2

−3

2
M − 1 3M − 1 −2M − 3 0 0 0 −10M

0 a4 1 5 1 1 0 0 7

−M aw1 1 −1 1 0 1 0 5

−M aw2
1

2
−2 1 0 0 1 5

1

2
M + 2 M − 4 0 0 2M + 3 0 15

0 a4 0 6 0 1 −1 0 2

3 a3 1 −1 1 0 1 0 5

−M aw2 −1

2
−1 0 0 −1 1 0

As we can see, there is an artificial vector in the optimal basis, even though it
has been driven to zero, as in the previous example. However, in this case there is
no redundant constraint in the model.

In this example, it is possible to compute a new optimal tableau in which the
artificial vector is nonbasic. The optimal solution to the problem is degenerate.
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x1 x2 x3 x4 w1 w2

4 0 0 0 7 +M −4 +M 15

0 a4 −3 0 0 1 −7 6 2

3 a3
3

2
0 1 0 2 −1 5

1 a2
1

2
1 0 0 1 −1 0

�

3. Cycling. Normally, the simplex algorithm stops after a finite number of
iterations. However, if the solution is degenerate, it may cause the algorithm to
cycle and iterate indefinitely without ever reaching termination but simply switch-
ing from one basis to another2. This may happen if ties at the leaving vector rule
are not correctly broken.

Some rules have been specified in order to prevent cycling, and thus guarantee
finite convergence of the simplex algorithm. They are designed to ensure that
none of the previous bases visited by the simplex algorithm are repeated. As there
is a finite number of bases, this automatically guarantees stopping after a finite
number of iterations. Some cycling prevention rules are the lexicographic rule
for selecting the leaving vector and Bland’s rule for selecting the entering and the
leaving vectors.

4. Computational complexity of the simplex algorithm. The simplex al-
gorithm is of exponential complexity. However, the performance of the simplex
algorithm is usually appropriate; it has been empirically proved to reach the op-
timal solution quite efficiently. In most of the cases, the algorithm is observed to
take 3m

2
iterations, beingA anm× n matrix. This means that the convergence of

the algorithm is more sensitive to the number of constraints than to the number of
variables of the model.

Several attempts have been carried out by researchers to find a polynomial-
time algorithm. Karmakar’s algorithm is one of them.

2An example can be seen in Linear programming and network flows. M. S. Bazaraa et al.
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