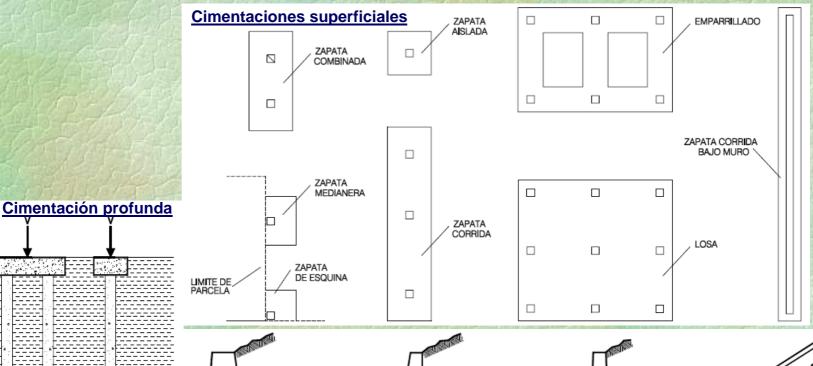

TEMA 5. DETERMINACION DE ASIENTOS.

Introducción: asientos

- → El objetivo de este tema es calcular las deformaciones producidas en el terreno como consecuencia de la aplicación de acciones exteriores.
- → Estas deformaciones se denominan "asientos" o "asentamientos" ("settlement").
- → No hay que confundir "asiento" del terreno con "hundimiento" del terreno. Éste <u>conlleva el fallo o rotura</u> del terreno y se estudia en el tema 7.

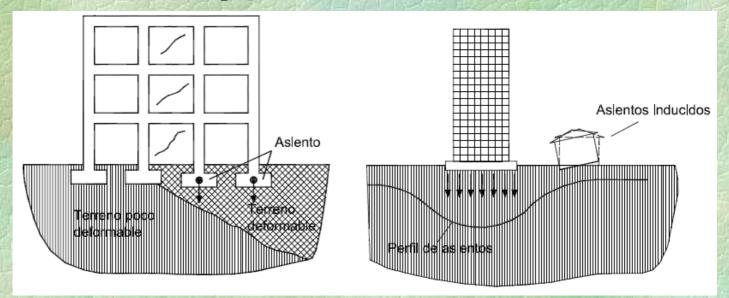


SUELO

TEMA 5. DETERMINACION DE ASIENTOS.

Introducción: asientos y cimentaciones

→ Es obligatorio verificar los asientos en el proyecto de cimentaciones de puentes, muros de contención, edificaciones, etc.


Imágenes extraídas del CTE. DB-SE-Cimientos

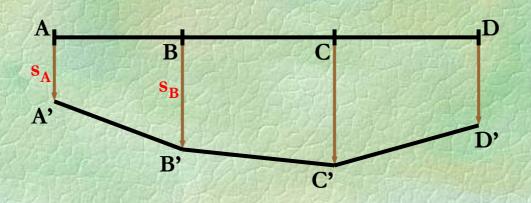
DE CONTRAFUERTES

Importancia de los asientos

- → Constituyen un Estado Límite de Servicio (E.L.S.)
 - ◆ Pueden inducir esfuerzos y deformaciones anormales en la estructura, aunque no lleguen a romperla afectando al confort de los usuarios y al funcionamiento de equipos e instalaciones.

Ejemplos de E.L.S. Imágenes extraídas del CTE. DB-SE-Cimientos.

→ Las situaciones de Estado Límite Ultimo (E.L.U.) conducen al colapso de la construcción.

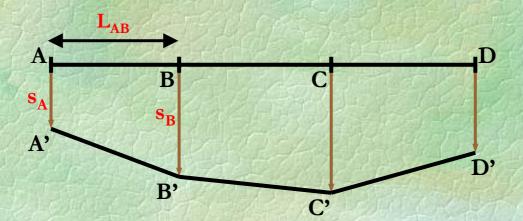


Mecanica

TEMA 5. DETERMINACION DE ASIENTOS.

Limites en los movimientos (I)

- → Asiento (s).
 - Máximo recomendado en cimentaciones para obras de carretera:
 - → Zapatas aisladas: 25 mm. Losas: 50 mm.
 - Máximo recomendado (edificación): 50 mm (general). Excepciones:
 - Obras de carácter monumental: 12 mm / 25 mm (G-S-M/C).
 - 2 Edificios H.A. gran rigidez: 35 mm / 50 mm (G-S-M/C).
 - Asiento máximo en rellenos:
 - ➤ Vías con IMD > 500: <u>20 cm</u>. Vías con IMD < 500: <u>30 cm</u>.

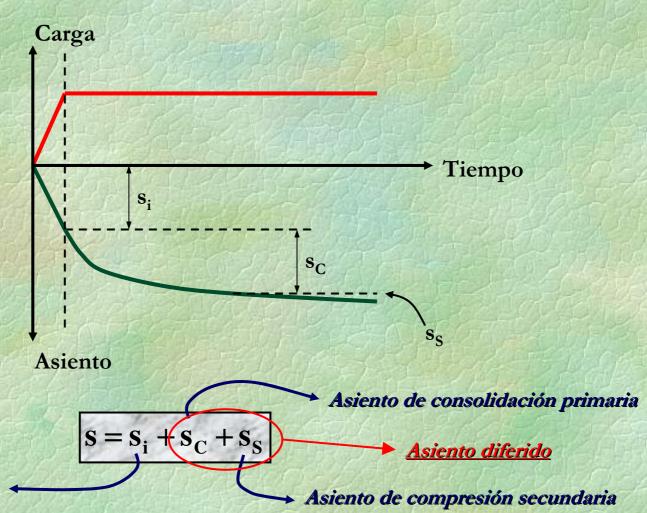

TEMA 5. DETERMINACION DE ASIENTOS.

Limites en los movimientos (II)

- \rightarrow Asiento diferencial ($\delta s_{AB} = s_B s_A$).
 - No debería ser superior a 12'5 mm (edificación).
- \rightarrow <u>Distorsión angular</u> ($\beta_{AB} = \delta s_{AB}/L_{AB}$).

Tabla 2.2. Valores límite basados en la distorsión angular		
Tipo de estructura	Limite	
Estructuras isostáticas y muros de contención	1/300	
Estructuras reticuladas con tabiquería de separación	1/500	
Estructuras de paneles prefabricados	1/700	
Muros de carga sin armar con flexión cóncava hacia arriba	1/1000	
Muros de carga sin armar con flexión cóncava hacia abajo	1/2000	

DB-SE-Cimientos

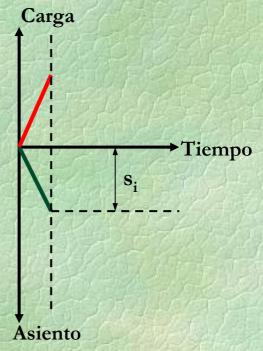

Mecanica

Asiento

instantáneo

TEMA 5. DETERMINACION DE ASIENTOS.

Componentes del asiento


E.H.U. U.P.V.

Mecanica

TEMA 5. DETERMINACION DE ASIENTOS.

Asiento instantáneo (si)

- → Se produce de manera inmediata o simultánea con la aplicación de la carga.
- → En suelos granulares de permeabilidad alta (G y S) constituye la práctica totalidad del asiento.
- → En suelos de permeabilidad baja (M y C) saturados, en los momentos iniciales apenas se produce drenaje alguno, por lo que este asiento inicial corresponde a una distorsión sin cambio de volumen.

 s_i / s

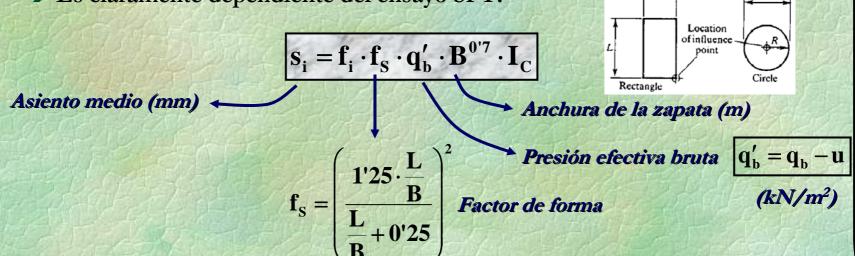
70 - 90 %

40 - 60 %

10 - 25 %

Tipo de suelo
Arena
Arcillas rígidas
Arcillas blandas

Valores típicos del asiento instantáneo

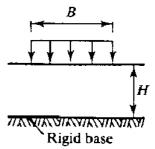


Pto. de

TEMA 5. DETERMINACION DE ASIENTOS.

Cálculo del asiento instantáneo en suelos granulares de permeabilidad alta (I)

- → El método establecido por el DB-SE-C es el debido a Burland y Burbidge, válido para suelos granulares con una proporción en peso de partículas de más de 2 cm inferior al 30 %.
- → Está basado en un análisis realizado sobre 200 casos reales.
- → Es claramente dependiente del ensayo SPT.



- → Cimentaciones rígidas: toda ella se asienta lo mismo.
- → Cimentaciones flexibles: se asienta más el centro y menos los extremos.

Cálculo del asiento instantáneo en suelos granulares de permeabilidad alta (II)

$$\mathbf{S}_{i} = \mathbf{f}_{i} \cdot \mathbf{f}_{S} \cdot \mathbf{q}_{b}' \cdot \mathbf{B}^{0'7} \cdot \mathbf{I}_{C}$$

→ f; es un factor de corrección que permite considerar la existencia de una capa rígida por debajo de la zapata a profundidad $H < Z_i$, donde Z_i es la profundidad de influencia bajo la zapata, dentro de la cual se produce el 75 % del asiento.

$$\mathbf{Z}_{i} = \mathbf{B}^{0'75}$$

→
$$I_C$$
 es el *índice de compresibilidad.* $I_C = \frac{1'71}{N_1''^4}$

$$I_{\rm C} = \frac{1'71}{N_{\rm med}^{1'4}}$$

$$\mathbf{f}_{i} = \frac{\mathbf{H}}{\mathbf{Z}_{i}} \cdot \left(2 - \frac{\mathbf{H}}{\mathbf{Z}_{i}} \right)$$

- → N_{med} es el número medio de golpes del ensayo SPT en la zona de influencia Z_i.
- Cuando el terreno se encuentra consolidado o cuando la cimentación se sitúa en el fondo de una excavación a cuya profundidad la máxima tensión efectiva vertical haya sido o', el valor de q', a introducir será:

$$\left(q_b' - \frac{2}{3} \cdot \sigma_{v0}'\right) \quad \text{cuando } \sigma_{v0}' < q_b' \qquad \left(\frac{q_b'}{3}\right)$$

$$\left(\frac{\mathbf{q}_{b}'}{3}\right)$$
 cuando $\mathbf{\sigma'}_{v0} \geq \mathbf{q'}_{b}$

Mecanica

TEMA 5. DETERMINACION DE ASIENTOS.

<u>Cálculo del asiento instantáneo en suelos granulares de</u> <u>permeabilidad alta</u> (III)

$$\mathbf{s}_{i} = \mathbf{f}_{i} \cdot \mathbf{f}_{S} \cdot \mathbf{q}_{b}' \cdot \mathbf{B}^{0'7} \cdot \mathbf{I}_{C}$$

- → El método no se considera aplicable para valores de N < 7.
- → En el caso de que el terreno esté compuesto por arenas finas y arenas limosas bajo el N.F., se puede emplear la corrección de Terzaghi para N > 15:

$$N(corregido) = 15 + 0.5 \cdot [N(medido) - 15]$$

En suelos granulares con una proporción en peso de partículas de más de 2 cm superior al 30 % los resultados del ensayo SPT pueden estar sujetos a incertidumbres, por lo que se recomienda utilizar la teoría de la Elasticidad.

Cálculo del asiento total (s) en suelos granulares de permeabilidad alta

→ Se permanece del lado de la seguridad si se calcula como:

$$s = 1'5 \cdot s_i$$

Into en i er ia

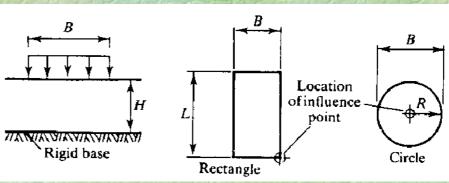
TEMA 5. DETERMINACION DE ASIENTOS.

Cálculo del asiento instantáneo en suelos de permeabilidad baja (I)

→ Se emplea la teoría de la elasticidad lineal, por lo que es válido para cargas que no producen la plastificación del suelo.

Expresión general:

$$\mathbf{s}_{i} = \mathbf{C}_{S} \cdot \mathbf{q} \cdot \mathbf{B} \cdot \left(\frac{1 - v^{2}}{\mathbf{E}_{u}} \right)$$


- → C_s es un factor que depende de la forma y dimensiones de la cimentación. Se encuentra tabulado.
- → q es la carga repartida uniforme aplicada.

Cimentación rígida:

Toda ella se asienta lo mismo.

Cimentación flexible:

Se asienta más el centro y menos los extremos.

Dimensiones características B y H

TEMA 5. DETERMINACION DE ASIENTOS.

Cálculo del asiento instantáneo en suelos de permeabilidad baja (II)

TABLE 5.3 SHAPE AND RIGIDITY FACTORS, C_s, FOR CALCULATING SETTLEMENTS OF POINTS ON LOADED AREAS AT THE SURFACE OF AN ELASTIC HALFSPACE*.

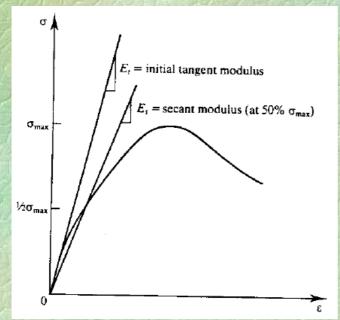
Fundamentos

Mecanica

	a. Infinite Depth	·	
Center	Corner	Edge Middle of Long Side	Average
1.00		0.64	0.85
0.79		0.79	0.79
1.12	0.56	0.76	0.95
0.82	0.82	0.82	0.82
1.53	0.76	1.12	1.30
2.10	1.05	1.68	1.82
2.56	1.28	2.10	2.24
1.12	1.12	1.12	1.12
1,6	1.6	1.6	1.6
2.0	2.0	2.0	2.0
	1.00 0.79 1.12 0.82 1.53 2.10 2.56	Center Corner 1.00 0.79 1.12 0.56 0.82 0.82 1.53 0.76 2.10 1.05 2.56 1.28 1.12 1.12 1.6 1.6	Center Corner Edge / Middle of Long Side 1.00 0.64 0.79 0.79 1.12 0.56 0.76 0.82 0.82 0.82 1.53 0.76 1.12 2.10 1.05 1.68 2.56 1.28 2.10 1.12 1.12 1.12 1.6 1.6 1.6

b. Limited Depth Over a Rigid Base						
	Center of Rigid Circular Area		Carne	er of Flexible Rec	tangular Area	
H/B	Diameter = 8	L/B = 1	L/B=2	L/B = 5	L/B = 10	$L/B = \infty (strip)$
v = 0.50						
0	0.00	0.00	0.00	0.00	0.00	0.00
0.5	0.14	0.05	0.04	0.04	0.04	0.04
1.0	0.35	0.15	0.1.2	0.10	0.10	0.10
1.5	0.48	0.23	0.22	0.18	0.18	0.18
2.0	0.54	0.29	0.29	0.27	0.26	0.26
3.0	0.62	0.36	0.40	0.39	0.38	0.37
5.0	0.69	0.44	0.52	0.55	0.54	0.52
10.0	0.74	0.48	0.64	0.76	0.77	0.73
STATE OF STREET		The same of the same of the			No. of the last of	II D V

E.H.U.

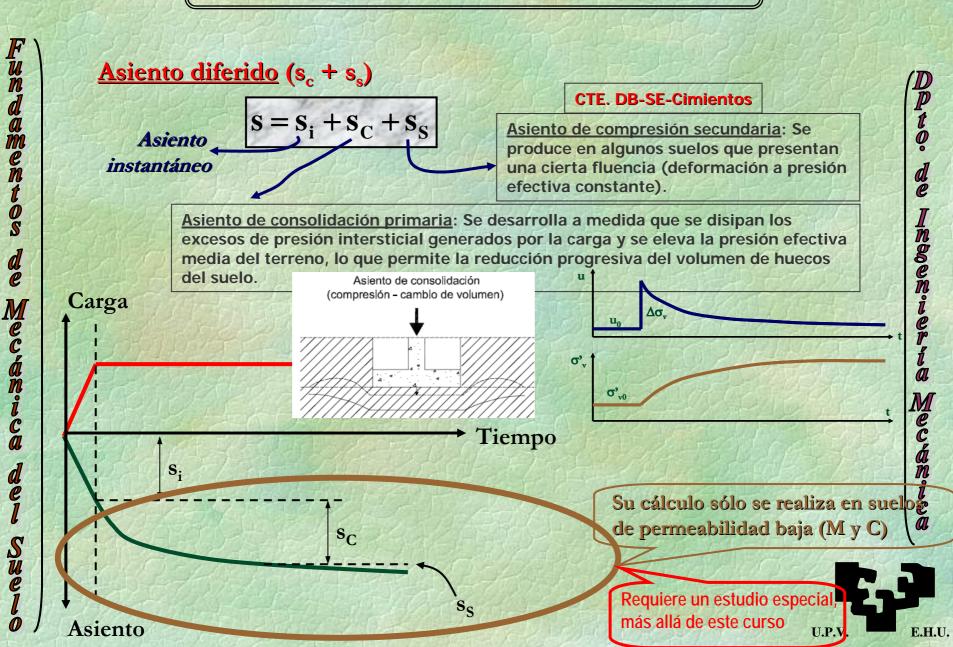

U.P.V.

Mecanica

TEMA 5. DETERMINACION DE ASIENTOS.

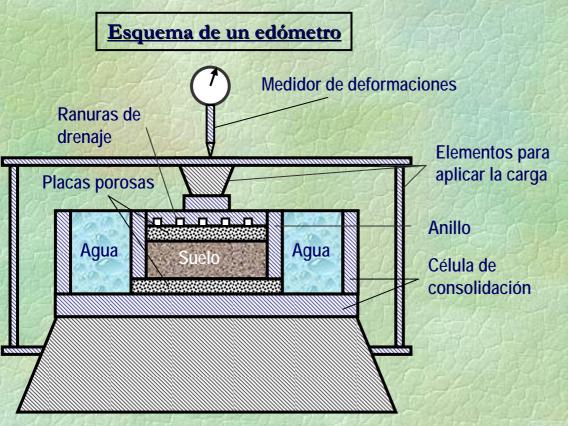
Cálculo del asiento instantáneo en suelos de permeabilidad baja (III)

- → Determinación de los parámetros elásticos.
- Coeficiente de Poisson (ν): habitualmente se asume ν = 0'5.
- 2 Módulo de elasticidad sin drenaje (E_u): Se puede obtener mediante ensayos geotécnicos in situ como el presiométrico.
- Eu también se puede obtener mediante ensayos de laboratorio (triaxial). ¡DOWN



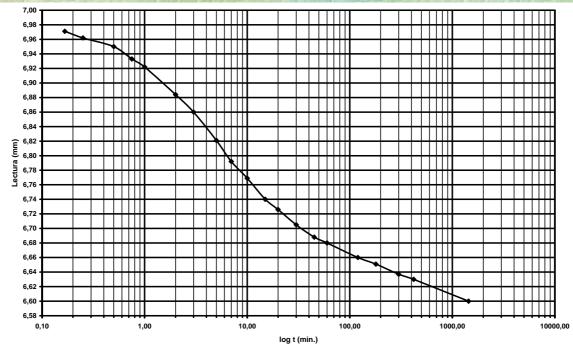
Obtención d	de E,, en	laboratorio
-------------	-----------	-------------

Consistencia	E _u (MPa)
Blanda	2'5 - 15
Media a firme	15 - 50
Muy firme a dura	50 - 200


Rango de valores típicos de Eu

El ensayo edométrico (I) - UNE 103405:1994 y ASTM D2435-04.

- → Se emplea para calcular el asiento diferido en suelos de permeabilidad baja.
- → Se obtienen curvas de consolidación, y de ellas c_v.
- → Y la curva edométrica (e log σ'). ¡IMPORTANTE!

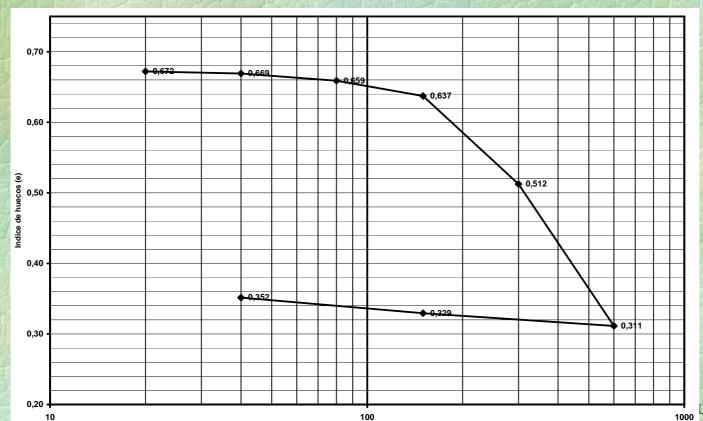


Ingenier

TEMA 5. DETERMINACION DE ASIENTOS.

El ensayo edométrico (II). Procedimiento (I).

- → Carga en diferentes escalones: 5, 10, 20, 40, 80, 150, 300, 600, 1.000, 1.500 kPa.
- → Al menos 6 escalones consecutivos, cada uno mantenido 24 horas.
- → Se toman medidas del reloj comparador (asiento de la muestra) en tiempos: 10, 15, 30, 45 s, 1, 2, 3, 5, 7, 10, 15, 20, 30, 45 min., 1, 2, 3, 5, 7, 24 horas, ...
- → Se representa la evolución del asiento en el tiempo para cada escalón de carga, lo que se denomina curva de consolidación.

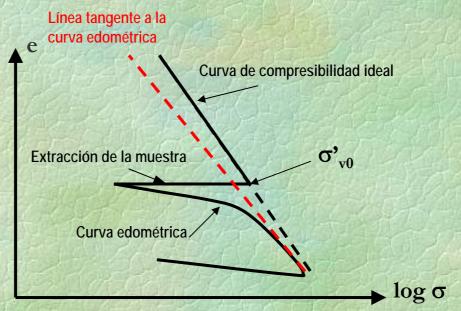


de

TEMA 5. DETERMINACION DE ASIENTOS.

El ensayo edométrico (III). Procedimiento (II).

- Tras finalizar el proceso de carga comienza el de descarga. Mínimo dos escalones, mantenidos cada uno 24 horas. Unicamente se toma la lectura final.
- → La representación del índice de huecos de la muestra al final de cada escalón frente a la carga aplicada da lugar a la curva edométrica.



Mecanica

TEMA 5. DETERMINACION DE ASIENTOS.

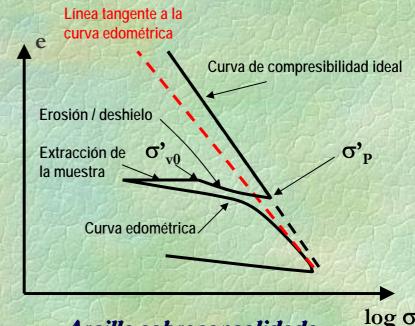
El ensayo edométrico (IV). Tipos de arcillas según su comportamiento mecánico (I).

Arcilla normalmente consolidada

σ'_{v0}: tensión efectiva inicial

Ingenier

Mecanica


TEMA 5. DETERMINACION DE ASIENTOS.

El ensayo edométrico (V). Tipos de arcillas según su comportamiento mecánico (II).

σ'_{v0}: tensión efectiva inicial

σ'_n: presión de preconsolidación $(100 - 200 \text{ kN/m}^2)$

→ Se puede definir como la máxima tensión que ha soportado el estrato de arcilla a lo largo de su vida geológica.

Arcilla sobreconsolidada

 $log \sigma$

$$\mathbf{R}_{\mathrm{OC}} = \mathbf{OCR} = \frac{\sigma_{\mathrm{p}}'}{\sigma_{\mathrm{0}}'}$$

- → Razón de sobreconsolidación (Overconsolidation Ratio)
- \rightarrow R_{OC} > 3'5 \Rightarrow Suelo muy consolidado

