INTRODUCCIÓN A LOS MÉTODOS NUMÉRICOS¹

EJERCICIOS (Introducción al Análisis Numérico y a la Computación)

- **1.a** Construir un algoritmo (y dibujar su diagrama de flujo) que tomando la ecuación $a x^2 +$ b x + c = 0 con raíces reales $x_1 y x_2, x_1 \ge x_2$, (i) calcule el perímetro y el área del cuadrado de lado $x_1 - x_2$; (ii) calcule la circunferencia y el área del círculo de radio $x_1 - x_2$. Ejecutar los algoritmos en el caso que los coeficientes de la ecuación sean a=3, b=-27 y c=42.
- 1.b Construir un algoritmo (y dibujar su diagrama de flujo) para buscar la suma y el producto de los elementos pares y de los elementos impares de un vector de n elementos. Ejecutar el algoritmo en el caso que el vector esté constituido por los enteros entre 1 y 9 (incluídos).
 - 2. Dados los siguientes valores:
 - a) $p = \frac{1}{3}$, $p^* = 0.33333$,

c) $p = e, p^* = 2.5,$

b) $p = \frac{10000}{3}$, $p^* = 3333.333$, d) $p = \pi$ (a 7 dígitos, $\pi = 3.141593$), $p^* = 3.141$.

¿Cuál es el (i) error absoluto, (ii) error relativo al aproximar p por p^* ? ¿Con cuántas cifras significativas aproxima p^* a p?

- 3. Encontrar cotas para x, si x es una aproximación
 - a) con tres cifras de π ,

- b) con cuatro cifras de e,
- c) con cinco cifras de 333.333,
- d) con seis cifras de π .
- 4. Convertir el número $AF.301_{16}$ a su representación en base b=8; el número 7214.73_8 a su representación en base b = 16; el número 101101110.1100001011₂ a sus representaciones en base b=8 y 16; el número 175.238 a sus representaciones en base b=2 y b=16.
- 5. Efectúe los siguientes cálculos (i) exactamente, (ii) usando aritmética cortando a tres dígitos, (iii) usando aritmética de redondeo a tres dígitos. Determine luego la pérdida de dígitos significativos suponiendo que los números dados son exactos.
 - a) (164. + 0.913) (143. + 21.0),
- b) (164.3 143.9) + (0.9136 21.0),
- c) (164. 143.) + (0.913 21.0),
- d) (16.46 143.) + (9.13 2.108).

6. Representación interna de números enteros.

- i) Representar los siguientes números en magnitud-signo con 8 bits: 18, -18, 23, -23, 14, -14.
- ii) ¿Qué números decimales representan las siguientes series de 8 bits, codificados en magnitud-signo?: 10100010, 00100010, 11101010, 01101010, 10101011, 00101011.
- iii) Representar en exceso con 8 bits los siguientes números: 18, -18, 23, -23, 14, -14.
- iv) ¿Qué números decimales representan las siguientes series de 8 bits, codificados en exceso?: 10100010, 00100010, 11101010, 01101010, 10101011, 00101011.
- v) Representar con 8 bits en complemento a dos los siguientes números decimales: 18, -18, 23, -23, 14, -14.
- vi) ¿Qué números decimales representan las series de 8 bits, codificadas en complemento a dos?: 10100010, 00100010, 11101010, 01101010, 10101011, 00101011.
- vii) ¿Qué números decimales representan la serie de 8 bits, codificadas en complemento a dos?: 01111111 y 10000000.
- viii) ¿Quáles son el menor número negativo y el mayor número positivo que pueden almacenarse en complemento a dos con 8 bits?

7. Representación interna de números reales.

- i) Representar en punto flotante con 32 bits, 1 de signo, 7 de exponente y 24 de mantisa, los números decimales: 205.3125, -1206.96875.
- ii) ¿Qué números decimales representan los siguientes códigos de 32 bits?
- 8. Determinar el error absoluto máximo para $y = x_1^3 + x_2$, si

$$x_1 = 2.0 \pm 0.1$$
, $x_2 = 3.0 \pm 0.02$

- i) exactamente, operando con intervalos;
- ii) utilizando las fórmulas (aproximadas) del error absoluto y relativo en las operaciones aritméticas.
- 9. Queremos calcular $a=(3-2\sqrt{2})^6$, utilizando el valor aproximado 1.41421 para $\sqrt{2}$. Escoger, entre las fórmulas equivalentes siguientes, la más adecuada desde un punto de vista numérico:

ico:

$$\frac{1}{(3+2\sqrt{2})^6}$$

$$\frac{1}{19601-13860\sqrt{2}}$$

$$(17-12\sqrt{2})^3$$

$$\frac{1}{(17+12\sqrt{2})^3}$$

$$\frac{1}{19601+13860\sqrt{2}}$$

- 10. Mostrar que el error relativo de una cantidad es aproximadamente igual al error absoluto de su logaritmo natural.
- 11. El número de condición de una función se define como:

$$\frac{x f'(x)}{f(x)}$$

Cuando este número es grande la función está mal condicionada en x.

- i) Deducir la fórmula teniendo en consideración que el número de condición mide el error relativo en la función causado por un error relativo en el argumento.
- ii) ¿Cuál es el número de condición para las siguientes funciones?

$$f(x) = \sqrt{x}$$
, $f(x) = \frac{1}{1-x}$, $f(x) = x^n$.

12. Mediante el cálculo del índice de condicionamiento de las funciones involucradas en el siguiente algoritmo, deducir en que puntos del dominio el error de redondeo de la función

$$f: \mathcal{R}^2 \to \mathcal{R}, \quad f(x,y) = (\sqrt{x \cdot y} - 5 + y)$$

puede llegar a ser muy grande.

$$\phi^{(0)}: \mathcal{R}^2 \to \mathcal{R}^2 \; ; \qquad \phi^{(1)}: \mathcal{R}^2 \to \mathcal{R}^2 \; ; \qquad \phi^{(2)}: \mathcal{R}^2 \to \mathcal{R} \; .$$

$$\phi^{(0)}(x,y) = (x \cdot y, y)^t \; ; \qquad \phi^{(1)}(u,v) = (\sqrt{u}, v - 5)^t \; ; \qquad \phi^{(2)}(\alpha,\beta) = \alpha + \beta \; .$$

13. Estudia la propagación del error absoluto de la función $\phi(x,y) = \frac{x^2}{x^2 + y}$ que se calcula mediante el proceso:

$$\phi^{(0)}\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x^2 \\ y \end{array}\right); \qquad \phi^{(1)}\left(\begin{array}{c} u \\ v \end{array}\right) = \left(\begin{array}{c} u \\ u+v \end{array}\right); \qquad \phi^{(2)}\left(\begin{array}{c} \alpha \\ \beta \end{array}\right) = \frac{\alpha}{\beta}.$$

Calcula los errores absolutos aproximados cometidos al evaluar la función en los puntos (2,5) y (5.3,1.7) efectuando los cálculos con aritmética de redondeo a tres dígitos.