Práctica de Aula PA-RE.2:

Sea el siguiente modelo:

$$Y_t = \beta_1 X_{1t} + \beta_2 X_{2t} + u_t \qquad u_t \sim iid(0, \sigma_u^2) \qquad t = 1, 2, \dots, T$$
 (1)

donde $X_{1t} = \gamma Z_t + \eta_t \quad \eta_t \sim iid(0, \sigma_\eta^2)$ y X_{2t} y Z_t son variables no estocásticas.

1. ¿Cuándo estimarías el modelo por el método de Variables Instrumentales utilizando la variable Z_t como instrumento para la variable X_{1t} ? ¿Por qué? ¿Crea problemas la variable X_{2t} ? ¿Por qué?

A partir de una muestra de 52 observaciones se han obtenido los siguientes productos cruzados:

	Y_t	X_{1t}	X_{2t}	Z_t
Y_t	100	80	-60	60
X_{1t}		100	-40	-10
$X_{1t} \\ X_{2t}$			80	50
Z_t				40

por ejemplo $\sum X_{1t}X_{2t} = -40$

2. Siendo Z_t el instrumento para X_{1t} , estima los coeficientes β_1 y β_2 del modelo utilizando el método de variables instrumentales.

Los resultados de estimar por MCO el modelo han sido:

$$\widehat{Q}_{t} = 0,625 X_{1t} - 0,4375 X_{2t}
\widehat{(des}(\widehat{\beta}_{i,MCO})) (0,077) (0,086)$$
(2)

3. Contrasta la $H_0: E(X_{1t}u_t) = 0$ sabiendo que:

$$\widehat{V}(\widehat{\beta}_{VI}) = \begin{bmatrix} 2,1166 & 1,0583 \\ 1,0583 & 1,2254 \end{bmatrix}$$

Como conclusión del resultado del contraste ¿cuál es el método adecuado para estimar el modelo (2)? ¿Qué propiedades tienen dichos estimadores?