INTRODUCTORY ECONOMETRICS Dpt of Econometrics & Statistics (EA3) University of the Basque Country UPV/EHU OCW Self Evaluation Time: 21/2 hours

_

Specific competences to be evaluated in this exercise:

- 1. To analyse critically the basic elements of Econometrics in order to understand the logic of econometric modelling and be able to specify causal relationships among economic variables.
- 2. To identify the relevant statistical sources in order to be able to search for, organise and systematically arrange available economic data.
- 3. To use with confidence appropriate statistical methods and available computing tools in order to correctly estimate and validate econometric models.
- 4. To handle econometric prediction tools in order to estimate unknown or future values of an economic variable.
- 5. To interpret adequately the results obtained in order to be able to write meaningful reports about the behaviour of economic data.

EXERCISE

In order to carry out a study on employees' wages, a company collects information from its 500 employees¹ as follows:

- *W_i*: **present Wage** of the *i*-th employee (in thousands of euros),
- Ini: Initial wage of the *i*-th employee (in thousands of euros),
- *T_i*: service Time in the company of the *i*-th employee (in months),
- *E_i*: **previous Experience** of the *i*-th employee (in months),

	W_i	In _i	T_i	E_i	i	W_i	In_i	T_i	E_i
	46.24	. 31.09	35	71					
	2 127.2	8 53.19	233	139					
	36.91	30.5	29	47	486	57.13	33.57	99	69
4	69.85	38.37	78	98	487	62.11	33.37	94	71
4	5 33.86	30.5	16	53	488	58.57	30.5	113	59
	5 36.43	30.5	26	27	489	50.64	32.38	77	61
	90.69	42.46	167	98	490	38.37	30.5	26	56
8	34.97	30.5	21	41	491	20.5	20.5	25	0
9	52.51	31.79	78	52	492	71.16	44	45	103
1	0 84.41	35.84	196	74	493	35.73	30.5	10	27
1	1 48.28	31.72	27	77	494	37.92	30.5	28	24
1	2 61.38	35.81	103	89	495	56.56	30.5	96	60
1	3 39.62	30.5	21	49	496	24.53	20.5	21	36
1	4 79.05	46.72	38	133	497	38.84	30.5	15	47
1	5 100.6	9 59.37	42	180	498	38.52	30.5	27	36
					499	64.33	41.76	28	110
					500	94.69	41.94	214	101

Please do not write under this line.

¹Source: own computer generated data. (c) 2009 J Fernandez-Macho; EA3, UPV/EHU, University of the Basque Country.

FIRST PART

The expert hired to do the study begins by specifying a SLRM for the present Wage in terms of the Initial wage:

$$W_i = \beta_0 + \beta_1 I n_i + u_i, \qquad i = 1, \dots, N \tag{1}$$

Using the following sample information,

$$\sum_{i=1}^{500} W_i = 27771.40$$

$$\sum_{i=1}^{500} (W_i - \overline{W})^2 = 234530.53$$

$$\sum_{i=1}^{500} In_i = 17012.09$$

$$\sum_{i=1}^{500} W_i In_i = 1005208.51$$

$$\sum_{i=1}^{500} (W_i - \overline{W})(In_i - \overline{In}) = 60309.40$$

- 1. (1 point) Write down the sample regression function for the proposed model.
 - A. $\widehat{W}_i = \beta_0 + \beta_1 I n_i$ B. $\widehat{W}_i = -41.25 + 2.84 I n_i$ C. SRF = 73.1%D. $\widehat{W}_i = -21.84 + 4.25 I n_i$
 - $\mathsf{E.} \ E(Y_i) = \beta_0 + \beta_1 X_i$
 - F. $\overline{W}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \overline{In}_i$

2. (1 point) Give an interpretation for the estimated coefficient of the Initial wage (In).

- A. It is equal to the estimated coefficient of the dependent variable ceteris paribus.
- B. It is the estimated proportion of dependent variable explained by the regression ceteris paribus.
- C. The present Wage increases 4.25 euros when the Initial wage increases 1 euro.
- D. The present Wage increases $2840 \ {\rm euros}$ when the Initial wage increases $1000 \ {\rm euros}.$
- E. The present Wage increases 2.84% when the Initial wage increases 1% ceteris paribus.
- F. It is the estimated increase when the regression increases one measurement unit ceteris paribus.
- 3. (a) (1 point) What assumptions **about the error term** are necessary for the OLS estimator to be the **BLU Estimator**?
 - (b) (1 point) and for hypothesis testing?
 - A. The same.
 - B. None of them.
 - C. We need assumptions about disturbances not about errors.
 - D. Hypothesis testing needs an accurate model therefore there can be no errors in our regression.
 - E. We also need the errors to be normal.
 - F. All of the above.

(b) _____

4. (2 points) The following graph shows the residuals for Model 1. Comment on the validity of the assumptions for OLS to be BLUE.

5. (1 point) Write down the sample regression function if the *W* and *In* variables were measured in **thousands** of **dollars** (assume an exchange rate of \$1.3 per euro).

5

- A. $\widehat{W}_i = 1.3\beta_0 + 1.3\beta_1 In_i$
- B. $\overline{W}_i = \widehat{\beta}_0 + 1.3 \widehat{\beta}_1 \overline{In}_i$
- C. $E(Y_i) = 1.3\beta_0 + \beta_1 X_i$
- D. $\widehat{W}_i = -21.84 + 5.23In_i$
- E. $\widehat{W}_i = -53.62 + 2.84In_i$
- F. $SRF = 1.3 \times 73.1\%$

Please do not write under this line.

SECOND PART

The expert decides to make use of all the available information, that is, he now also includes the **service Time** and **previous Experience** explanatory variables into the model. The following results are thus obtained:

Model 2: OLS estimates using the 500 observations 1–500 Dependent variable: W

	Coefficient	Std. Error	<i>t</i> -ratio	p-value
const	-12.326	1.06981	-11.5223	0.0000
In	1.29671	0.0491288	26.3940	0.0000
Т	0.202709	0.00287339	70.5468	0.0000
Е	0.134346	0.0106343	12.6334	0.0000

Sum of squared residuals	4760.34
Standard error of the regression $(\hat{\sigma})$	3.09798
Unadjusted R ²	0.979703
F(3,496)	7980.25

6. (1 point) Write down the proposed GLRM.

A. $E(Y_t) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i}$

B. $Y_t = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + u_i$

C. $W_i = \gamma_0 + \gamma_1 I n_i + \gamma_2 T_i + \gamma_3 E_i$

D. $W_i = \gamma_0 + \gamma_1 I n_i + \gamma_2 T_i + \gamma_3 E_i + u_i$

- E. $\widehat{W}_i = -12.3267 + 1.29671In_i + 0.202709T_i + 0.134346E_i$
- F. $\overline{W}_i = -12.3267 + 1.29671\overline{In}_i + 0.202709\overline{T}_i + 0.134346\overline{E}_i + \overline{u}_i$

7. (1 point) Write down the sample regression function.

- A. $E(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i}$
- $\mathsf{B.} \ W_i = \beta_0 + \beta_1 I n_i + \beta_2 T_i + \beta_3 E_i$
- C. $\widehat{W}_i = -11.5223 + 26.3940In_i + 70.5468T_i + 12.6334E_i$
- D. $\widehat{W}_i = -12.3267 + 1.29671In_i + 0.202709T_i + 0.134346E_i$
- $\mathsf{E.} \ \overline{W}_i = -12.3267 + 1.29671 \overline{In}_i + 0.202709 \overline{T}_i + 0.134346 \overline{E}_i + \overline{u}_i$
- F. $W_i = \gamma_0 + \gamma_1 I n_i + \gamma_2 T_i + \gamma_3 E_i + u_i$

8. (1 point) Write down the **first two values** of vector X'Y.

- A. 27721 & 1005208
- B. 234530 & 21200
- C. -11.5223 & 26.3940
- D. -12.3267 & 1.29671
- E. $X'_1 Y \& X'_2 Y$
- F. $\sum WIn_t \& \sum WT_t$

9. (a) (1 point) Write down the expression used to calculate the **goodness-of-fit** of the estimated model.

- A. $R^2 = 1 RSS/ESS$
- $\mathsf{B.} \ R^2 = TSS/ESS$
- C. $R^2 = \sum \widehat{W}_i^2 T \overline{W}^2 / \sum W_i^2 T \overline{W}^2$
- D. $R^2 = (\sum \overline{W}_i^2 T\widehat{W}^2)/(\sum W_i^2 T\widehat{W}^2)$
- E. $R^2 = (\Sigma \widehat{W}_i^2 T \overline{W}^2) / (\Sigma W_i^2 T \overline{W}^2)$
- F. None of the above.

(a) _____

8.

- (b) (1 point) Interpret the result.
 - A. Proportion of regression explained by the variables.
 - B. Expected increase of dependent variable when the explanatory variable increases one measurement unit *ceteris* paribus.
 - C. Proportion of TSS explained by the regression.
 - D. Proportion of dependent variable variance explained by the regression.
 - E. Proportion of ESS explained by the RSS/TSS.
 - F. It is positive when the fit is good and viceversa.

10. (1 point) According to Model 2, what is the estimated present Wage for the first employee?

- A. 46.24 euros.
- B. 44.62 euros.
- C. 44620 euros.
- D. -12.326 euros.
- E. $\beta_0 + \beta_1 I n_i$
- F. $\beta_0 + \beta_1 I n_i + \beta_2 T_i + \beta_3 E_i$

(b) _____

10.

11

12

11. (1 point) Angela A. has a **service Time** in the company of 60 months **more** than Brandon B., however, they both started with the same **previous Experience** and **Initial wage**. What is the **estimated difference** between the **present Wages** of Alice and Brandon?

- A. $\beta_0 + \beta_1 In_i + \beta_2 \times 60 + \beta_3 E_i$
- B. Since Angela is a woman she will probably earn less than Brandon.
- C. 12.16 euros ceteris paribus.
- D. $60 \times \beta_2$
- E. 12160 euros.
- F. W_{Angela} W_{Brandon}

12. (2 points) Test the individual significance of the variable "employee's service Time".

- A. $0.202709 < 1.96 \Rightarrow$ Don't reject H_0 : employee's service Time is a relevant variable at 5% significance.
- B. $70.55 > 1.96 \Rightarrow$ Don't reject H_0 : employee's service Time is a relevant variable at 5% significance.
- C. $70.55 > 1.65 \Rightarrow$ Reject H_0 : $\beta_2 = 0$ at 5% significance.
- D. $0.2027/0.00287 > 1.65 \Rightarrow$ Reject H_0 : employee's service Time is a relevant variable at 5% significance.
- E. $0.2027/0.00287 > 1.96 \Rightarrow$ Reject H_0 : $\beta_2 = 0$ at 5% significance.
- F. $1.96 < |0.2027/0.00287| \Rightarrow$ Don't Reject H_0 : $\beta_2 = 0$ at 5% significance.

13. (1 point) Test the overall significance of the explanatory variables in Model 2.

- A. R-squared = $0.97970 > 0.85 \Rightarrow$ Reject $H_0 \rightarrow In, T, E$ jointly relevant at 5% significance.
 - B. p-value(F-statistic) $< 0.00001 \Rightarrow$ Reject $H_0 \rightarrow In, T, E$ jointly relevant at 5% significance.
 - C. p-value(F-statistic) $< 0.00001 \Rightarrow$ Don't Reject $H_0 \rightarrow In, T, E$ NOT jointly relevant at 5% significance.
 - D. $(R^2/k)/(1-R^2)/(T-k) > 0.00001 \Rightarrow \text{Reject } H_0 \rightarrow In, T, E \text{ jointly relevant at 5% significance.}$
 - E. F-statistic > $\mathscr{F}(4,495) \Rightarrow$ Reject $H_0 \rightarrow In, T, E$ jointly relevant at 5% significance.
 - F. F-statistic $\langle \mathscr{F}(3,496) \Rightarrow$ Don't Reject $H_0 \rightarrow In, T, E$ NOT jointly relevant at 5% significance.

13. _____

- 14. The expert thinks that **previous Experience** and **service Time** have the **same effect** on **present Wage** and decides to incorporate this information into the model in order to obtain estimators with a smaller variance.
 - (a) (1 point) Write down the **null** (H_0) and **alternative** (H_a) hypotheses (in terms of the corresponding β coefficients).
 - A. $H_0: E_i = T_i$ vs. $H_a: E_i \neq T_i$
 - B. $H_0: 0.2027 > 0.1343$ vs. $H_a: 0.2027 <= 0.1343$
 - C. $H_0: \beta_2 \beta_3 = 0$ vs. $H_a: \beta_3 \beta_2 = 0$

(b) (1 point) Write down the **restricted** model.

- $$\begin{split} & \text{A. } \quad W_i = \beta_0 + \beta_1 I n_i + \beta_2 T_i + \beta_3 E_i + u_i \\ & \text{B. } \quad W_i = \beta_0 + \beta_1 I n_i + \beta_2 T_i + (1 \beta_2) E_i + u_i \\ & \text{C. } \quad W_i = \widehat{\beta}_0 + \widehat{\beta}_1 I n_i + (1 \widehat{\beta}_2) E_i + \widehat{u}_i \\ & \text{D. } \quad \widehat{W}_i = \widehat{\beta}_0 + \widehat{\beta}_1 I n_i + \widehat{\beta}_2 (T_i + E_i) \end{split}$$
- $\mathsf{E.} \ W_i = \beta_0 + \beta_1 I n_i + \beta_2 (T_i + E_i) + u_i$
- F. $\widehat{W}_i = -12.3267 + 1.29671 In_i + 0.202709(T_i + E_i)$
- (c) (2 points) Given the following information:

500

(b) .

(C)

$$\widehat{W}_{i} = -8.53682 + 1.07565 In_{i} + 0.194511 (T_{i} + E_{i}) \quad ; \qquad \sum_{i=1}^{500} \widehat{u}_{i}^{2} = 5085.58$$

can you tell whether the expert's reasoning is correct? Why?

- A. CORRECT because $R^2 = 1 5085.58/TSS$ is high.
- B. CORRECT because T_i and E_i are relevant variables at 5% significance.
- C. CORRECT because $0.194511/0.00258618 = 75.21 > t(496) \Rightarrow Z_i = T_i + E_i$ is significant at 5% significance.
- D. NOT CORRECT because of the presence of multicolinearity in $Z_i = T_i + E_i$.
- E. NOT CORRECT because 5.82 > t(496) \Rightarrow Reject expert's reasoning at 5% significance.
- F. NOT CORRECT because $5.82 > \mathscr{F}(496) \Rightarrow$ Reject expert's reasoning at 5% significance.

Please do not write under this line.

(a) _____

THIRD PART

In the past, it has been alleged that women workers may be suffering from some sort of wage discrimination in the company. In order to take appropriate actions, the company's advisory board asks the expert to find evidence to proof or disproof this. After estimating the appropriate model, he obtains the following results:

Model 3: OLS estimates using the 500 observations 1–500 Dependent variable: W

	Coeffic	cient	Std. Error			<i>t</i> -rat	io	p-value
const	-10.016		0.376698			-26.5889		0.0000
In	1.22923		0.0161561			76.0842		0.0000
Т	0.200350		0.000943168			212.4222		0.0000
Е	0.0885570		0.00402965			21.9764		0.0000
D	-0.346670		0.234570			-1.4779		0.1401
D×E	0.0824304		0.00306608			26.8846		0.0000
500	$n_i = 17012,$	500	500		500		500	
$\sum_{i=1}^{500} I_i$	$n_i = 17012.$	$\sum_{i=34}^{500} T_i = 34$	879. S	$E_i = 3576^4$	4. $\sum_{i=1}^{500} D_i$	= 299.	$\sum_{i=1}^{500} D_i \times E_i =$	22033.
$\sum_{i=1}^{n}$	10,0	$\sum_{i=1}^{n} i^{i}$	i=1	-1 -1	i = 1	,	$\sum_{i=1}^{l} i \cdots = i$	
	an	0.13747	-0.00514	0.00001	0.00054	-0.03025	0.00040]	
	0	-0.00514	0.00025	0.00001	-0.000054	-0.03023 -0.00012	0.00000	
		0.00001	0.00023	0.00000	-0.00003 0.00000	0.00000	0.00000	
	$(X'X)^{-1} =$	0.00001	-0.00000	0.00000	0.00000	0.00043	-0.00001	
		-0.03025	-0.00003 -0.00012			0.00043	-0.00001 -0.00064	
				0.00000	0.00043			
		0.00040	0.00000	0.00000	-0.00001	-0.00064	0.00001	
		Sum of a	uarad rasidu	a1a	500.02	24		
Sum of squared residuals 509.924								
Standard error of the regression $(\hat{\sigma})$ 1.01599								
Unadjusted R^2			d <i>R</i> ²					
		F(5, 494)			45342	.5		
15. (a) (1 point) Write down the proposed model.								
A. $E(Y_i) = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i}$								
$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + 1$								

- B. $W_i = \gamma_0 + \gamma_1 I n_i + \gamma_2 T_i + \gamma_3 E_i + D_i (1 + E_i) + u_i$
- C. $W_i = \beta_0 + \beta_1 I n_i + \beta_2 T_i + \beta_3 E_i + \beta_4 D_i + \beta_5 D_i E_i + u_i$
- D. $\widehat{W}_i = \beta_0 + \beta_1 I n_i + \beta_2 T_i + \beta_3 E_i + \gamma D_i + \delta D_i E_i$
- $\mathsf{E.} \ \overline{W}_i = -10.016 + 1.229\overline{In}_i + 0.2000\overline{T}_i + 0.088\overline{E}_i 0.347\overline{D}_i + 0.082\overline{D_iE}_i + \overline{u}_i$
- F. $\widehat{W}_i = -10.016 + 1.229\widehat{In}_i + 0.2000\widehat{T}_i + 0.088\widehat{E}_i 0.347\widehat{D}_i + 0.082\widehat{D_iE}_i$

(b) (2 points) What is the new variable **D**? What value does it take for Angela? And for Brandon?

A. D_i is the Discrimination variable that takes a value of 1 if women are discriminated and 0 otherwise.

- B. $D_i = \mathscr{I}(\text{men} > \text{women})$, where \mathscr{I} is the indicator function.
- C. $D_i = \mathscr{I}(\text{Company} = \text{discrimination subsample})$, where \mathscr{I} is the indicator function.
- D. $D_i = \mathscr{I}(i = man)$, where \mathscr{I} is the indicator function.
- E. $D_i = 1$ if men earn more than women and 0 otherwise.
- F. $D_i = 1$ or $D_i = 0$ depending on salary.

(b) _____

(a)

(c) (2 points) What is the average previous Experience for men? And for women?

- A. 35764/500 & 22033/500 months.
- B. 22033/500 & 35764/500 months.
- C. 37 & 52 months.
- D. 52 & 37 months.
- E. 3.8 & 6.14 years.
- F. 6.14 & 3.8 years.

(c) _____

(d) (1 point) Give an interpretation for the estimated coefficient of the $D \times E$ variable.

- A. The estimated increase in wages is 0.0824304 when the variable DixEi increases one measurement unit ceteris paribus.
- B. It is the expected increase in wages when the variable DixEi increases one measurement unit ceteris paribus.
- C. It is the estimated increase in wages when the variable Di×Ei increases one measurement unit ceteris paribus.
- D. Any worker (irrespective of sex) will experience a salary increase of 82.4 euros when there is an extra month of previous experience *ceteris paribus*.
- E. A man's salary increases 82.4 euros more than a woman when they have an extra month of previous experience *ceteris* paribus.
- F. A woman's salary increases 82.4 euros more than a woman when they have an extra month of previous experience *ceteris paribus*.
- (e) (2 points) Give an interpretation for the **estimated** coefficient of the **E** variable.
 - A. The estimated increase in wages is 0.0885570 when the variable Di×Ei increases one measurement unit *ceteris paribus*.
 - B. It is the average salary increase when the variable Ei increases one measurement unit ceteris paribus.
 - C. It is the expected salary increase when the variable Ei increases one measurement unit ceteris paribus.
 - D. Any worker (irrespective of sex) will experience a salary increase of 88.6 euros when there is an extra month of previous experience *ceteris paribus*.
 - E. A woman's salary increases 88.6 euros when she has an extra month of previous experience ceteris paribus.
 - F. A man's salary increases 88.6 euros when she has an extra month of previous experience ceteris paribus.

(f) (1 point) Do you agree with the claim of salary discrimination? Why?

- A. NO, I DON'T AGREE, because the coefficient for the dummy variable D is not significant at th5 5% significance level.
- B. YES, I AGREE, but it is men who are suffering from wage discrimination because the coefficient of D is negative.
- C. YES, I AGREE, women suffer from wage discrimination because F=45342.5>F(5,494).
- D. YES, I AGREE, women suffer from wage discrimination because F=2958.84>F(2,494).
- E. IT DEPENDS, because $D \times E$ is a relevant variable while D is not.
- F. IT DEPENDS on the salary level, because the coefficients of the dummy variables are of different sign.

16. (a) (1 point) From the results obtained in Model 3, the expert says that a **female** worker that after **5 years of previous Experience** entered the company **10 years ago** with an **Initial wage of 30000 euros** would have **doubled** her salary by now. Do you agree with the expert?

- A. NO, because a 95% confidence interval for the Initial wage coefficient is $\beta_1 \in [1.19748; 1.26097]$ and 2 is not inside.
 - B. NO, because the last estimated coefficient is significant at the 5% significance level.
 - C. NO, because 2×30 falls outside a Wage interval of 95% confidence = [54.21; 58.22].
 - D. YES, because 2×30 falls within a Wage interval of 95% confidence = [56.21; 62.22].
 - E. YES, because $\widehat{W}_p = -10.016 + 1.229 \times 30000 + 0.2000 \times 10 + 0.088 \times 5 0.347 \times 1 + 0.082 \times 5$ falls within a Wage interval of 95% confidence.
 - F. That depends on the post and experience of the particular woman versus the average male worker.

(a) _____

(d) _

(e)

(f)

(b) (1 point) And if the worker was a man?

- A. NO, because 2×30 falls outside a Wage interval of 95% confidence = [48.81; 52.82].
- B. NO, because a 95% confidence interval for the Initial wage coefficient is $\beta_1 \in [1.19748; 1.26097]$ and 2 is not inside.
- C. YES, because $\widehat{W}_p = -10.016 + 1.229 \times 30000 + 0.2000 \times 10 + 0.088 \times 5$ falls within a Wage interval of 95% confidence.

D. YES, because 2 (that is, double) falls within a Wage interval of 95% confidence.

- E. YES, because 2×30 falls within a Wage interval of 95% confidence = [58.81; 62.82].
- F. YES, I agree because men tend on average to earn more than women.

(b) _____

Please do not write under this line.