INTRODUCTORY ECONOMETRICS
 Dpt of Econometrics \& Statistics (EA3)
 University of the Basque Country UPV/EHU
 OCW Self Evaluation
 Time: 21/2 hours

SURNAME:
NAME: ID\#:

Specific competences to be evaluated in this exercise:

1. To analyse critically the basic elements of Econometrics in order to understand the logic of econometric modelling and be able to specify causal relationships among economic variables.
2. To identify the relevant statistical sources in order to be able to search for, organise and systematically arrange available economic data.
3. To use with confidence appropriate statistical methods and available computing tools in order to correctly estimate and validate econometric models.
4. To handle econometric prediction tools in order to estimate unknown or future values of an economic variable.
5. To interpret adequately the results obtained in order to be able to write meaningful reports about the behaviour of economic data.

EXERCISE

In order to carry out a study on employees' wages, a company collects information from its 500 employees as follows:
W_{i} : present Wage of the i-th employee (in thousands of euros),
$I n_{i}$: Initial wage of the i-th employee (in thousands of euros),
$T_{i}:$ service Time in the company of the i-th employee (in months),
E_{i} : previous Experience of the i-th employee (in months),

i	W_{i}	$I n_{i}$	T_{i}	E_{i}	i	W_{i}	$I n_{i}$	T_{i}	E_{i}
1	46.24	31.09	35	71	\cdots				
2	127.28	53.19	233	139	\ldots				
3	36.91	30.5	29	47	486	57.13	33.57	99	69
4	69.85	38.37	78	98	487	62.11	33.37	94	71
5	33.86	30.5	16	53	488	58.57	30.5	113	59
6	36.43	30.5	26	27	489	50.64	32.38	77	61
7	90.69	42.46	167	98	490	38.37	30.5	26	56
8	34.97	30.5	21	41	491	20.5	20.5	25	0
9	52.51	31.79	78	52	492	71.16	44	45	103
10	84.41	35.84	196	74	493	35.73	30.5	10	27
11	48.28	31.72	27	77	494	37.92	30.5	28	24
12	61.38	35.81	103	89	495	56.56	30.5	96	60
13	39.62	30.5	21	49	496	24.53	20.5	21	36
14	79.05	46.72	38	133	497	38.84	30.5	15	47
15	100.69	59.37	42	180	498	38.52	30.5	27	36
\ldots					499	64.33	41.76	28	110
\ldots					500	94.69	41.94	214	101

Please do not write under this line.

[^0]
FIRST PART

The expert hired to do the study begins by specifying a SLRM for the present Wage in terms of the Initial wage:

$$
\begin{equation*}
W_{i}=\beta_{0}+\beta_{1} \operatorname{In}_{i}+u_{i}, \quad i=1, \ldots, N \tag{1}
\end{equation*}
$$

Using the following sample information,

$$
\begin{array}{ll}
\sum_{i=1}^{500} W_{i}=27771.40 & \sum_{i=1}^{500}\left(W_{i}-\bar{W}\right)^{2}=234530.53 \\
\sum_{i=1}^{500} I_{i}=17012.09 & \sum_{i=1}^{500}\left(\text { In }_{i}-\overline{I n}\right)^{2}=21200.65 \\
\sum_{i=1}^{500} W_{i} \operatorname{In}=1005208.51 & \sum_{i=1}^{500}\left(W_{i}-\bar{W}\right)(\operatorname{In}-\overline{I n})=60309.40
\end{array}
$$

1. (1 point) Write down the sample regression function for the proposed model.
A. $\widehat{W}_{i}=\beta_{0}+\beta_{1} I n_{i}$
B. $\widehat{W}_{i}=-41.25+2.84 I n_{i}$
C. $S R F=73.1 \%$
D. $\widehat{W}_{i}=-21.84+4.25$ In $_{i}$
E. $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{i}$
F. $\bar{W}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} \overline{I n}_{i}$
\qquad
2. (1 point) Give an interpretation for the estimated coefficient of the Initial wage (In).
A. It is equal to the estimated coefficient of the dependent variable ceteris paribus.
B. It is the estimated proportion of dependent variable explained by the regression ceteris paribus.
C. The present Wage increases 4.25 euros when the Initial wage increases 1 euro.
D. The present Wage increases 2840 euros when the Initial wage increases 1000 euros.
E. The present Wage increases 2.84% when the Initial wage increases 1% ceteris paribus.
F. It is the estimated increase when the regression increases one measurement unit ceteris paribus.
\qquad
3. (a) (1 point) What assumptions about the error term are necessary for the OLS estimator to be the BLU Estimator?
(b) (1 point) and for hypothesis testing?
A. The same.
B. None of them.
C. We need assumptions about disturbances not about errors.
D. Hypothesis testing needs an accurate model therefore there can be no errors in our regression.
E. We also need the errors to be normal.
F. All of the above.
(b) \qquad
4. (2 points) The following graph shows the residuals for Model 1. Comment on the validity of the assumptions for OLS to be BLUE.

5. (1 point) Write down the sample regression function if the W and $I n$ variables were measured in thousands of dollars (assume an exchange rate of $\$ 1.3$ per euro).
A. $\widehat{W}_{i}=1.3 \beta_{0}+1.3 \beta_{1} n_{i}$
B. $\bar{W}_{i}=\widehat{\beta}_{0}+1.3 \widehat{\beta}_{1} \overline{I n}_{i}$
C. $E\left(Y_{i}\right)=1.3 \beta_{0}+\beta_{1} X_{i}$
D. $\widehat{W}_{i}=-21.84+5.23$ In $_{i}$
E. $\widehat{W}_{i}=-53.62+2.84 I n_{i}$
F. $S R F=1.3 \times 73.1 \%$

Please do not write under this line.

SECOND PART

The expert decides to make use of all the available information, that is, he now also includes the service Time and previous Experience explanatory variables into the model. The following results are thus obtained:

Model 2: OLS estimates using the 500 observations $1-500$
Dependent variable: W

	Coefficient	Std. Error	t-ratio	p-value
const	-12.326	1.06981	-11.5223	0.0000
In	1.29671	0.0491288	26.3940	0.0000
T	0.202709	0.00287339	70.5468	0.0000
E	0.134346	0.0106343	12.6334	0.0000

Sum of squared residuals	4760.34
Standard error of the regression $(\widehat{\sigma})$	3.09798
Unadjusted R^{2}	0.979703
$F(3,496)$	7980.25

6. (1 point) Write down the proposed GLRM.
A. $E\left(Y_{t}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}$
B. $Y_{t}=\beta_{1}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+u_{i}$
C. $W_{i}=\gamma_{0}+\gamma_{1} I n_{i}+\gamma_{2} T_{i}+\gamma_{3} E_{i}$
D. $W_{i}=\gamma_{0}+\gamma_{1} I n_{i}+\gamma_{2} T_{i}+\gamma_{3} E_{i}+u_{i}$
E. $\widehat{W}_{i}=-12.3267+1.296711 n_{i}+0.202709 T_{i}+0.134346 E_{i}$
F. $\bar{W}_{i}=-12.3267+1.29671 \overline{I n}_{i}+0.202709 \bar{T}_{i}+0.134346 \bar{E}_{i}+\bar{u}_{i}$
7. (1 point) Write down the sample regression function.
A. $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}$
B. $W_{i}=\beta_{0}+\beta_{1} I n_{i}+\beta_{2} T_{i}+\beta_{3} E_{i}$
C. $\widehat{W}_{i}=-11.5223+26.3940 I n_{i}+70.5468 T_{i}+12.6334 E_{i}$
D. $\widehat{W}_{i}=-12.3267+1.296711 n_{i}+0.202709 T_{i}+0.134346 E_{i}$
E. $\bar{W}_{i}=-12.3267+1.29671 \overline{I n}_{i}+0.202709 \bar{T}_{i}+0.134346 \bar{E}_{i}+\bar{u}_{i}$
F. $W_{i}=\gamma_{0}+\gamma_{1} I n_{i}+\gamma_{2} T_{i}+\gamma_{3} E_{i}+u_{i}$
8. \qquad
9. (1 point) Write down the first two values of vector $X^{\prime} Y$.
A. $27721 \& 1005208$
B. $234530 \& 21200$
C. $-11.5223 \& 26.3940$
D. $-12.3267 \& 1.29671$
E. $X_{1}^{\prime} Y \& X_{2}^{\prime} Y$
F. $\sum W I n_{t} \& \sum W T_{t}$
10. \qquad
11. (a) (1 point) Write down the expression used to calculate the goodness-of-fit of the estimated model.
A. $R^{2}=1-R S S / E S S$
B. $R^{2}=T S S / E S S$
C. $R^{2}=\sum \widehat{W}_{i}^{2}-T \bar{W}^{2} / \sum W_{i}^{2}-T \bar{W}^{2}$
D. $R^{2}=\left(\sum \bar{W}_{i}^{2}-T \widehat{W}^{2}\right) /\left(\sum W_{i}^{2}-T \widehat{W}^{2}\right)$
E. $R^{2}=\left(\sum \widehat{W}_{i}^{2}-T \bar{W}^{2}\right) /\left(\sum W_{i}^{2}-T \bar{W}^{2}\right)$
F. None of the above.
(a) \qquad
(b) (1 point) Interpret the result.
A. Proportion of regression explained by the variables.
B. Expected increase of dependent variable when the explanatory variable increases one measurement unit ceteris paribus.
C. Proportion of TSS explained by the regression.
D. Proportion of dependent variable variance explained by the regression.
E. Proportion of ESS explained by the RSS/TSS.
F. It is positive when the fit is good and viceversa.
(b) \qquad
12. (1 point) According to Model 2, what is the estimated present Wage for the first employee?
A. 46.24 euros.
B. 44.62 euros.
C. 44620 euros.
D. -12.326 euros.
E. $\beta_{0}+\beta_{1}$ In
F. $\beta_{0}+\beta_{1}$ In $_{i}+\beta_{2} T_{i}+\beta_{3} E_{i}$
13. (1 point) Angela A. has a service Time in the company of 60 months more than Brandon B., however, they both started with the same previous Experience and Initial wage. What is the estimated difference between the present Wages of Alice and Brandon?
A. $\beta_{0}+\beta_{1} I n_{i}+\beta_{2} \times 60+\beta_{3} E_{i}$
B. Since Angela is a woman she will probably earn less than Brandon.
C. 12.16 euros ceteris paribus.
D. $60 \times \beta_{2}$
E. 12160 euros.
F. $W_{\text {Angela }}-W_{\text {Brandon }}$
14. (2 points) Test the individual significance of the variable "employee's service Time".
A. $0.202709<1.96 \Rightarrow$ Don't reject H_{0} : employee's service Time is a relevant variable at 5% significance.
B. $70.55>1.96 \Rightarrow$ Don't reject H_{0} : employee's service Time is a relevant variable at 5% significance.
C. $70.55>1.65 \Rightarrow$ Reject $H_{0}: \beta_{2}=0$ at 5% significance.
D. $0.2027 / 0.00287>1.65 \Rightarrow$ Reject H_{0} : employee's service Time is a relevant variable at 5% significance.
E. $0.2027 / 0.00287>1.96 \Rightarrow$ Reject $H_{0}: \beta_{2}=0$ at 5% significance.
F. $1.96<|0.2027 / 0.00287| \Rightarrow$ Don't Reject $H_{0}: \beta_{2}=0$ at 5% significance.
15. \qquad
16. (1 point) Test the overall significance of the explanatory variables in Model 2.
A. R-squared $=0.97970>0.85 \Rightarrow$ Reject $H_{0} \rightarrow I n, T, E$ jointly relevant at 5% significance.
B. p-value $($ F-statistic $)<0.00001 \Rightarrow$ Reject $H_{0} \rightarrow I n, T, E$ jointly relevant at 5% significance.
C. p-value (F-statistic) $<0.00001 \Rightarrow$ Don't Reject $H_{0} \rightarrow I n, T, E$ NOT jointly relevant at 5% significance.
D. $\left(R^{2} / k\right) /\left(1-R^{2}\right) /(T-k)>0.00001 \Rightarrow$ Reject $H_{0} \rightarrow$ In, T, E jointly relevant at 5% significance.
E. F-statistic $>\mathscr{F}(4,495) \Rightarrow$ Reject $H_{0} \rightarrow I n, T, E$ jointly relevant at 5% significance.
F. F-statistic $<\mathscr{F}(3,496) \Rightarrow$ Don't Reject $H_{0} \rightarrow$ In, T, E NOT jointly relevant at 5% significance.
17. The expert thinks that previous Experience and service Time have the same effect on present Wage and decides to incorporate this information into the model in order to obtain estimators with a smaller variance.
(a) (1 point) Write down the null $\left(H_{0}\right)$ and alternative $\left(H_{a}\right)$ hypotheses (in terms of the corresponding β coefficients).
A. $H_{0}: E_{i}=T_{i}$ vs. $H_{a}: E_{i} \neq T_{i}$
B. $H_{0}: 0.2027>0.1343$ vs. $H_{a}: 0.2027<=0.1343$
C. $H_{0}: \beta_{2}-\beta_{3}=0$ vs. $H_{a}: \beta_{3}-\beta_{2}=0$
D. $H_{0}: \beta_{2}=\beta_{3}$ vs. $H_{a}: \beta_{2} \neq \beta_{3}$
E. $H_{0}: \widehat{\beta}_{2}=\widehat{\beta}_{3}$ vs. $H_{a}: \widehat{\beta}_{2} \neq \widehat{\beta}_{3}$
F. $H_{0}: \beta_{2}>\beta_{3}$ vs. $H_{a} \Rightarrow$ Reject H_{0} at 5% significance.
(a) \qquad
(b) (1 point) Write down the restricted model.
A. $W_{i}=\beta_{0}+\beta_{1} I_{i}+\beta_{2} T_{i}+\beta_{3} E_{i}+u_{i}$
B. $W_{i}=\beta_{0}+\beta_{1} \operatorname{In}_{i}+\beta_{2} T_{i}+\left(1-\beta_{2}\right) E_{i}+u_{i}$
C. $W_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} I n_{i}+\left(1-\widehat{\beta}_{2}\right) E_{i}+\widehat{u}_{i}$
D. $\widehat{W}_{i}=\widehat{\beta}_{0}+\widehat{\beta}_{1} I n_{i}+\widehat{\beta}_{2}\left(T_{i}+E_{i}\right)$
E. $W_{i}=\beta_{0}+\beta_{1} I n_{i}+\beta_{2}\left(T_{i}+E_{i}\right)+u_{i}$
F. $\widehat{W}_{i}=-12.3267+1.29671$ In $_{i}+0.202709\left(T_{i}+E_{i}\right)$
(b) \qquad
(c) (2 points) Given the following information:

$$
\widehat{\mathrm{W}}_{i}=-\underset{(0.87655)}{8.53682}+\underset{(0.032185)}{1.07565} \operatorname{In}_{i}+\underset{(0.0025862)}{0.194511}\left(T_{i}+E_{i}\right) \quad ; \quad \sum_{i=1}^{500} \widehat{u}_{i}^{2}=5085.58
$$

can you tell whether the expert's reasoning is correct? Why?
A. CORRECT because $R^{2}=1-5085.58 /$ TSS is high.
B. CORRECT because T_{i} and E_{i} are relevant variables at 5% significance.
C. CORRECT because $0.194511 / 0.00258618=75.21>\boldsymbol{t}(496) \Rightarrow Z_{i}=T_{i}+E_{i}$ is significant at 5% significance.
D. NOT CORRECT because of the presence of multicolinearity in $Z_{i}=T_{i}+E_{i}$.
E. NOT CORRECT because $5.82>\boldsymbol{t}(496) \Rightarrow$ Reject expert's reasoning at 5% significance.
F. NOT CORRECT because $5.82>\mathscr{F}(496) \Rightarrow$ Reject expert's reasoning at 5% significance.
(c) \qquad

Please do not write under this line.

THIRD PART

In the past, it has been alleged that women workers may be suffering from some sort of wage discrimination in the company. In order to take appropriate actions, the company's advisory board asks the expert to find evidence to proof or disproof this. After estimating the appropriate model, he obtains the following results:

Model 3: OLS estimates using the 500 observations $1-500$
Dependent variable: W

	Coefficient	Std. Error	t-ratio	p-value
const	-10.016	0.376698	-26.5889	0.0000
In	1.22923	0.0161561	76.0842	0.0000
T	0.200350	0.000943168	212.4222	0.0000
E	0.0885570	0.00402965	21.9764	0.0000
D	-0.346670	0.234570	-1.4779	0.1401
$\mathrm{D} \times \mathrm{E}$	0.0824304	0.00306608	26.8846	0.0000

$$
\begin{array}{r}
\sum_{i=1}^{500} I n_{i}=17012, \\
\quad \sum_{i=1}^{500} T_{i}=34879, \quad \sum_{i=1}^{500} E_{i}=35764, \quad \sum_{i=1}^{500} D_{i}=299, \quad \sum_{i=1}^{500} D_{i} \times E_{i}=22033 . \\
\left(X^{\prime} X\right)^{-1}=\left[\begin{array}{cccccc}
0.13747 & -0.00514 & 0.00001 & 0.00054 & -0.03025 & 0.00040 \\
-0.00514 & 0.00025 & 0.00000 & -0.00005 & -0.00012 & 0.00000 \\
0.00001 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
0.00054 & -0.00005 & 0.00000 & 0.00002 & 0.00043 & -0.00001 \\
-0.03025 & -0.00012 & 0.00000 & 0.00043 & 0.05331 & -0.00064 \\
0.00040 & 0.00000 & 0.00000 & -0.00001 & -0.00064 & 0.00001
\end{array}\right]
\end{array}
$$

Sum of squared residuals	509.924
Standard error of the regression $(\widehat{\sigma})$	1.01599
Unadjusted R^{2}	0.997826
$F(5,494)$	45342.5

15. (a) (1 point) Write down the proposed model.
A. $E\left(Y_{i}\right)=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}$
B. $W_{i}=\gamma_{0}+\gamma_{1} I n_{i}+\gamma_{2} T_{i}+\gamma_{3} E_{i}+D_{i}\left(1+E_{i}\right)+u_{i}$
C. $W_{i}=\beta_{0}+\beta_{1} I n_{i}+\beta_{2} T_{i}+\beta_{3} E_{i}+\beta_{4} D_{i}+\beta_{5} D_{i} E_{i}+u_{i}$
D. $\widehat{W}_{i}=\beta_{0}+\beta_{1} I n_{i}+\beta_{2} T_{i}+\beta_{3} E_{i}+\gamma D_{i}+\delta D_{i} E_{i}$
E. $\bar{W}_{i}=-10.016+1.229 \bar{n}_{i}+0.2000 \bar{T}_{i}+0.088 \bar{E}_{i}-0.347 \bar{D}_{i}+0.082 \widehat{D}_{i} E_{i}+\bar{u}_{i}$
F. $\widehat{W}_{i}=-10.016+1.229 \widehat{n}_{i}+0.2000 \widehat{T}_{i}+0.088 \widehat{E}_{i}-0.347 \widehat{D}_{i}+0.082{\widehat{D_{i} E}}_{i}$
(a) \qquad
(b) (2 points) What is the new variable \mathbf{D} ? What value does it take for Angela? And for Brandon?
A. D_{i} is the Discrimination variable that takes a value of 1 if women are discriminated and 0 otherwise.
B. $D_{i}=\mathscr{I}$ (men $>$ women), where \mathscr{I} is the indicator function.
C. $D_{i}=\mathscr{I}$ (Company = discrimination subsample), where \mathscr{I} is the indicator function.
D. $D_{i}=\mathscr{I}(\mathrm{i}=\mathrm{man})$, where \mathscr{I} is the indicator function.
E. $D_{i}=1$ if men earn more than women and 0 otherwise.
F. $D_{i}=1$ or $D_{i}=0$ depending on salary.
(b) \qquad
(c) (2 points) What is the average previous Experience for men? And for women?
A. $35764 / 500 \& 22033 / 500$ months.
B. $22033 / 500 \& 35764 / 500$ months.
C. $37 \& 52$ months.
D. $52 \& 37$ months.
E. $3.8 \& 6.14$ years.
F. $6.14 \& 3.8$ years.
\qquad

Page 7
(d) (1 point) Give an interpretation for the estimated coefficient of the $\mathbf{D} \times \mathbf{E}$ variable.
A. The estimated increase in wages is 0.0824304 when the variable $\mathrm{Di} \times$ Ei increases one measurement unit ceteris paribus.
B. It is the expected increase in wages when the variable Di×Ei increases one measurement unit ceteris paribus.
C. It is the estimated increase in wages when the variable DixEi increases one measurement unit ceteris paribus.
D. Any worker (irrespective of sex) will experience a salary increase of 82.4 euros when there is an extra month of previous experience ceteris paribus.
E. A man's salary increases 82.4 euros more than a woman when they have an extra month of previous experience ceteris paribus.
F. A woman's salary increases 82.4 euros more than a woman when they have an extra month of previous experience ceteris paribus.
(e) (2 points) Give an interpretation for the estimated coefficient of the \mathbf{E} variable.
A. The estimated increase in wages is 0.0885570 when the variable $\mathrm{Di} \times \mathrm{Ei}$ increases one measurement unit ceteris paribus.
B. It is the average salary increase when the variable Ei increases one measurement unit ceteris paribus.
C. It is the expected salary increase when the variable Ei increases one measurement unit ceteris paribus.
D. Any worker (irrespective of sex) will experience a salary increase of 88.6 euros when there is an extra month of previous experience ceteris paribus.
E. A woman's salary increases 88.6 euros when she has an extra month of previous experience ceteris paribus.
F. A man's salary increases 88.6 euros when she has an extra month of previous experience ceteris paribus.
(e) \qquad
(f) (1 point) Do you agree with the claim of salary discrimination? Why?
A. NO, I DON'T AGREE, because the coefficient for the dummy variable D is not significant at th5 5% significance level.
B. YES, I AGREE, but it is men who are suffering from wage discrimination because the coefficient of D is negative.
C. YES, I AGREE, women suffer from wage discrimination because $F=45342.5>F(5,494)$.
D. YES, I AGREE, women suffer from wage discrimination because $F=2958.84>F(2,494)$.
E. IT DEPENDS, because $\mathrm{D} \times \mathrm{E}$ is a relevant variable while D is not.
F. IT DEPENDS on the salary level, because the coefficients of the dummy variables are of different sign.
(f)
16. (a) (1 point) From the results obtained in Model 3, the expert says that a female worker that after $\mathbf{5}$ years of previous Experience entered the company 10 years ago with an Initial wage of $\mathbf{3 0 0 0 0}$ euros would have doubled her salary by now. Do you agree with the expert?
A. NO, because a 95% confidence interval for the Initial wage coefficient is $\beta_{1} \in[1.19748 ; 1.26097]$ and 2 is not inside.
B. NO, because the last estimated coefficient is significant at the 5% significance level.
C. NO, because 2×30 falls outside a Wage interval of 95% confidence $=[54.21 ; 58.22]$.
D. YES, because 2×30 falls within a Wage interval of 95% confidence $=[56.21 ; 62.22]$.
E. YES, because $\widehat{W}_{p}=-10.016+1.229 \times 30000+0.2000 \times 10+0.088 \times 5-0.347 \times 1+0.082 \times 5$ falls within a Wage interval of 95\% confidence.
F. That depends on the post and experience of the particular woman versus the average male worker.
(a)
(b) (1 point) And if the worker was a man?
A. NO, because 2×30 falls outside a Wage interval of 95% confidence $=[48.81 ; 52.82]$.
B. NO, because a 95% confidence interval for the Initial wage coefficient is $\beta_{1} \in[1.19748 ; 1.26097]$ and 2 is not inside.
C. YES, because $\widehat{W}_{p}=-10.016+1.229 \times 30000+0.2000 \times 10+0.088 \times 5$ falls within a Wage interval of 95% confidence.
D. YES, because 2 (that is, double) falls within a Wage interval of 95% confidence.
E. YES, because 2×30 falls within a Wage interval of 95% confidence $=[58.81 ; 62.82]$.
F. YES, I agree because men tend on average to earn more than women.
(b) \qquad

Please do not write under this line.

[^0]: ${ }^{1}$ Source: own computer generated data. © 2009 J Fernandez-Macho; EA3, UPV/EHU, University of the Basque Country.

