3. El núcleo y la imagen de una aplicación lineal.

De la definición de aplicación lineal, se deduce que si f es una aplicación lineal entre V y W y $\mathfrak{B}_V = \{v_1, \ldots, v_n\}$ es una base de V, entonces $\{f(v_1), \ldots, f(v_n)\}$ es un sistema generador de Imf. Es evidente que una aplicación lineal $f: V \to W$ es sobreyectiva si y sólo si el subespacio imagen Imf tiene la misma dimensión que W.

De forma análoga, en el apartado (vi) de la Proposición 1.1, hemos demostrado que si T es un subespacio de W, entonces $f^{-1}(T) = \{v \in V | f(v) \in T\}$ es un subespacio de V. Si elegimos $T = \{0_W\}$, tenemos que

$$f^{-1}(0_W) = \{ v \in V | f(v) = 0_W \}$$

es un subespacio de V, llamado **núcleo** de la aplicación lineal f y se suele denotar por $\ker f$.

Ejemplo.

(1) El núcleo de la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por f((x, y, z)) = (x + y, y + 2z) es $\ker f = \{(x, -x, \frac{x}{2}) | x \in \mathbb{R}\}.$

Entre las dimensiones de estos subespacios y la del espacio vectorial V se tiene la siguiente relación:

Proposición 3.1. Sean V y W dos K-espacios vectoriales, V de dimensión finita, y $f: V \to W$ una aplicación lineal. Entonces,

$$\dim(V) = \dim(\ker f) + \dim(\operatorname{Im} f).$$

Además, las aplicaciones lineales inyectivas se pueden caracterizar mediante el $\ker f$:

Proposición 3.2. Sean V y W dos K-espacios vectoriales y $f: V \to W$ una aplicación lineal. Entonces f es inyectiva si y sólo si su núcleo, $\ker f$, es el subespacio vectorial $\{0_V\}$.

Como consecuencia de las dos últimas proposiciones es fácil demostrar:

Corolario 3.3. Sean V y W dos K-espacios vectoriales de dimensión finita y $f:V \to W$. Entonces, f es inyectiva si y sólo si $\dim_K V = \dim_K f(V)$.

También es fácil probar:

Proposición 3.4. Sean V y W dos K-espacios vectoriales de dimensión finita f: $V \to W$ una aplicación lineal inyectiva. Si $\{v_1, \ldots, v_r\} \subseteq V$ es un subconjunto libre, entonces $\{f(v_1), \ldots, f(v_r)\} \subseteq W$ es libre.